Advertisement

Oxygen Sensing by the Carotid Body: Past and Present

  • Nanduri R. PrabhakarEmail author
  • Ying-Jie Peng
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 977)

Abstract

It is now well established that carotid bodies are sensory organs for monitoring arterial blood oxygen levels and trigger reflexes that are critical for maintaining homeostasis during hypoxemia. This review article provides a brief account of the early studies leading to the discovery of the carotid body as a sensory receptor and addresses current views of O2 sensing mechanism(s) in the carotid body and their physiological importance.

Keywords

Gasotransmitters Carbon monoxide H2Hypoxia Ion channels 

Notes

Acknowledgments

The research in our laboratory is supported by grants from National Institutes of Health, Heart, Lung and Blood Institute PO1-HL-90554 and UH2-HL-123610.

References

  1. 1.
    de Castro F (2009) Towards the sensory nature of the carotid body: Hering, de Castro and Heymansdagger. Front Neuroanat 3:23CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219PubMedPubMedCentralGoogle Scholar
  3. 3.
    Pflüger E (1868) Ueber die Ursache der Athembewegungen, sowie der Dyspnoë und Apnoë. Pflügers Arch Gesamte Physiol Meschen Tiere 1:61–106Google Scholar
  4. 4.
    Taube H (1743) Dissertationem inauguralem de vera nervi inter costalis origineGoogle Scholar
  5. 5.
    Kohn A (1900) Ueber den bau und die entwicklund der sogenannten carotisdruse. Archiv Mik Anat Entwick 56:81–148Google Scholar
  6. 6.
    De Castro F (1923) Evolución de los ganglios simpáticos vertebrales y prevertebrales. Conexiones y citotectonia de algunos grupos de ganglios en el niño y hombre adulto. Trab Lab Invest Biol Univ Madrid 20:113–208Google Scholar
  7. 7.
    De Castro F (1925) Technique pour la coloration du système nerveux quand il est pourvu de ses étuis osseux. Trav Lab Rech Biol 23:427–446Google Scholar
  8. 8.
    De Castro F (1926) Sur la structure et l’innervation de la glande intercarotidienne (glomus caroticum) de l’homme et des mammiferes et sur un nouveau systeme de l’innervation autonome du nerf glossopharyngien. Trav Lab Rech Biol 24:365–432Google Scholar
  9. 9.
    De Castro F (1928) Sur la structure et l’innervation du sinus carotidien de l’homme et des mammifères. Nouveaux faits sur l’innervation et la fonction du glomus caroticum. Trav Lab Rech Biol 25:331–380Google Scholar
  10. 10.
    De Castro F (1929) Ueber die Struktur und innervation des glomus caroticum beim Menschen aund bei den Säugetieren. Anatomisch-experimentelle Untersuchungen. Z Anat Entwicklungsgesch 89:250–265Google Scholar
  11. 11.
    Heymans C (1929) Le sinus carotidien, zone reflexogene regulatrice du tonus vagal cardiaque du tonus neurovasculaire et deI’adrenalinosecretion. Arch Int Pharmacodyn Ther 35:269–313Google Scholar
  12. 12.
    Heymans C, Bouckaert JJ (1930) Sinus caroticus and respiratory reflexes. J Physiol 69:254–266Google Scholar
  13. 13.
    Heymans C, Bouckart JJ, Dautrebande L (1930) Sinus carotidien et réflexes respiratoires. II. Influences respiratoires réflexes de l’acidôse de l’alcalose, de l’anhydride carbonique, de l’ion hydrogéne et de l’anoxémie: Sinus carotidiens et échanges respiratoires dans le poumons et au delá des poumons. Arch Int Pharmacodyn 39:400–448Google Scholar
  14. 14.
    Heymans C, Bouckaert JJ, Dautrebande L (1931) Au sujet du mécanisme de la bradycardie provoquée par la nicotine, la lobéline, le cyanure, le sulfure de sodium, les nitrites et la morphine, et de la bradycardie asphyxique. Arch Int Pharmacodyn 41:261–289Google Scholar
  15. 15.
    Heymans C, Bouckaert JJ, Regniers P (1933) Le Sinus Carotidien. G. Doin, Paris, pp 1–334Google Scholar
  16. 16.
    Heymans C, Bouckaert JJ, von Euler US et al (1932) Sinus carotidiens et reflexes vasomoteurs. Arch Int Pharmacodyn 43:86–110Google Scholar
  17. 17.
    Heymans J, Heymans C (1927) Sur les modifications directes et sur la regulationreflexede l’activitie du centre respiratory de la tete isolee du chien. Arch Int Pharmacodyn Ther 33:273–372Google Scholar
  18. 18.
    Heymans C, Ladon A (1925) Recherches physiologiques et pharmacologiques sur la tête isolée et le centre vague du chien. I: Anémie, asphyxie, hypertension, adrénaline, tonus pneumogastrique. Arch Int Pharmacodyn 30:145Google Scholar
  19. 19.
    Zotterman Y (1979) Opening remarks. In: von Euler C, Lagercrantz H (eds) Central nervous control of mechanisms of breathing. Peragam Press, Oxford/New York/Toranto/Sydney/Paris/Frankfort, pp 1–2Google Scholar
  20. 20.
    von Euler US, Liljestrand G, Zotterman Y (1939) The excitation mechanism of the chemoreceptors of the carotid body. Scand Arch Physiol 83:132–152CrossRefGoogle Scholar
  21. 21.
    Prabhakar NR, Semenza GL (2015) Oxygen sensing and homeostasis. Physiology (Bethesda) 30:340–348Google Scholar
  22. 22.
    Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554CrossRefPubMedGoogle Scholar
  23. 23.
    Mkrtchian S, Kahlin J, Ebberyd A et al (2012) The human carotid body transcriptome with focus on oxygen sensing and inflammation – a comparative analysis. J Physiol 590:3807–3819CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ortega-Saenz P, Pascual A, Gomez-Diaz R et al (2006) Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol 128:405–411CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Prabhakar NR, Dinerman JL, Agani FH et al (1995) Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A 92:1994–1997CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yuan G, Vasavda C, Peng YJ et al (2015) Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal 8:ra37CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Peng YJ, Makarenko VV, Nanduri J et al (2014) Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A 111:1174–1179CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Peng YJ, Nanduri J, Raghuraman G et al (2010) H2S mediates O-2 sensing in the carotid body. Proc Natl Acad Sci U S A 107:10719–10724CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li Q, Sun B, Wang X et al (2010) A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal 12:1179–1189CrossRefPubMedGoogle Scholar
  30. 30.
    Buckler KJ (2012) Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflugers Arch 463:743–754CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Telezhkin V, Brazier SP, Cayzac SH et al (2010) Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir Physiol Neurobiol 172:169–178CrossRefPubMedGoogle Scholar
  32. 32.
    Makarenko VV, Nanduri J, Raghuraman G et al (2012) Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol Cell Physiol 303:C916–C923CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences DivisionUniversity of ChicagoChicagoUSA

Personalised recommendations