Advertisement

Linear Systems and Control Theory for Quantum Information

  • Hendra I. NurdinEmail author
  • Naoki Yamamoto
Chapter
  • 784 Downloads
Part of the Communications and Control Engineering book series (CCE)

Abstract

This chapter illustrates several example applications of the theory of linear quantum systems to the analysis of problems of interest in quantum information processing and discusses two experimental demonstrations of real-time coherent feedback and measurement-based feedback control from the literature. The problems covered are dissipative generation of Gaussian states of single-mode oscillators, efficient enhancement of entanglement between traveling Gaussian fields, back-action evasion, perfect state transfer in a linear quantum network, and robust quantum amplification. The two experiments are demonstrations of enhancement of optical squeezing via static coherent feedback and generation of a spin-squeezed state in an atomic ensemble via measurement-based feedback control.

Keywords

Gaussian State Quantum Memory Atomic Ensemble Output Field Centralize Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Furusawa, P. van Loock, Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Wiley-VCH, Berlin, 2011)CrossRefGoogle Scholar
  3. 3.
    N.C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T.C. Ralph, M.A. Nielsen, Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)CrossRefGoogle Scholar
  4. 4.
    N.C. Menicucci, S.T. Flammia, P. van Loock, Graphical calculus for Gaussian pure states. Phys. Rev. A 83, 042335 (2011)CrossRefGoogle Scholar
  5. 5.
    J.F. Poyatos, J.I. Cirac, P. Zoller, Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728 (1996)CrossRefGoogle Scholar
  6. 6.
    N. Yamamoto, Parametrization of the feedback Hamiltonian realizing a pure steady state. Phys. Rev. A 72, 024104 (2005)CrossRefGoogle Scholar
  7. 7.
    B. Kraus, H.P. Buchler, S. Diehl, A. Kantian, A. Micheli, P. Zoller, Preparation of entangled state by quantum Markov processes. Phys. Rev. A. 78, 042307 (2008)CrossRefGoogle Scholar
  8. 8.
    F. Verstraete, M.M. Wolf, J.I. Cirac, Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Vollbrecht, C.A. Muschik, J.I. Cirac, Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Koga, N. Yamamoto, Dissipation-induced pure Gaussian state. Phys. Rev. A 85, 022103 (2012), Reprinted, with permission, \(\copyright \) (2012) by the American Physical SocietyGoogle Scholar
  11. 11.
    N. Yamamoto, Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach. Philos Trans. R. Soc. A 370, 5324–5337 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    R. Simon, E.C.G. Sudarshan, N. Mukunda, Gaussian pure states in quantum mechanics and the symplectic group. Phys. Rev. A 37, 3028–3038 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Y. Ikeda, N. Yamamoto, Deterministic generation of Gaussian pure states in a quasilocal dissipative system. Phys. Rev. A 87, 033802 (2013)CrossRefGoogle Scholar
  14. 14.
    O. Techakesari, H.I. Nurdin, On the quasi-balanceable class of linear quantum stochastic systems. Syst. Control Lett. 78, 25–31 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H.I. Nurdin, Structures and transformations for model reduction of linear quantum stochastic systems. IEEE Trans. Autom. Control 59(9), 2413–2425 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Tufarelli, A. Ferraro, A. Serafini, S. Bose, M.S. Kim, Coherently opening a high-Q cavity. Phys. Rev. Lett. 112, 133605 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Ma, X. Wang, C.P. Sun, F. Nori, Quantum spin squeezing. Phys. Rep. 509, 89–165 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Yanagisawa, H. Kimura, Transfer function approach to quantum control - part ii: control concepts and applications. IEEE Trans. Autom. Control 48(12), 2121–2132 (2003)CrossRefGoogle Scholar
  19. 19.
    J.E. Gough, S. Wildfeuer, Enhancement of field squeezing using coherent feedback. Phys. Rev. A 80, 042107 (2009)CrossRefGoogle Scholar
  20. 20.
    O. Crisafulli, N. Tezak, D.B.S. Soh, M.A. Armen, H. Mabuchi, Squeezed light in an optical parametric amplifier oscillator network with coherent feedback quantum control. Opt. Express 21, 18371–18386 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, A. Furusawa, Experimental demonstration of coherent feedback control on optical field squeezing. IEEE Trans. Autom. Control 57(8), 2045–2050. Reprinted, with permission, \(\copyright \) 2012 IEEE (2012)Google Scholar
  22. 22.
    Z. Shi, H.I. Nurdin, Coherent feedback enabled distributed generation of entanglement between propagating Gaussian fields. Quant. Inf. Process. 14, 337–359 (2015). \(\copyright \) 2014 Springer. Reprinted, with permission of SpringerGoogle Scholar
  23. 23.
    C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)Google Scholar
  24. 24.
    W.P. He, F.L. Li, Generation of broadband entangled light through cascading nondegenerate optical parametric amplifiers. Phys. Rev. A 76, 012328 (2007)CrossRefGoogle Scholar
  25. 25.
    Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, K. Peng, Cascaded entanglement enhancement. Phys. Rev. A 85, 040305(R) (2012)CrossRefGoogle Scholar
  26. 26.
    B.C. Jacobs, T.B. Pittman, J.D. Franson, Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002)CrossRefGoogle Scholar
  27. 27.
    W. Michiels, S.I. Niculescu, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Advances in Design and Control (Society of Industrial and Applied Mathematics, 2007)Google Scholar
  28. 28.
    K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL vol. 2.00: A Matlab package for bifurcation analysis of delay differential equations. Department of Computer Science, Katholieke Universiteit Leuven, Belgium, Technical Report TW-330 (2001)Google Scholar
  29. 29.
    K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    M. Di Loreto, M. Dao, L. Jaulin, J.-F. Lafay, J.J. Loiseau, Applied interval computation: a new approach for time-delays systems analysis, in Applications of Time Delay Systems, ed. J. Chiasson, J.J. Loiseau (Springer, Berlin 2007)Google Scholar
  31. 31.
    Z. Shi, H.I. Nurdin, Effect of phase shifts on EPR entanglement generated on two propagating Gaussian fields via coherent feedback, in Proceedings of the 53rd IEEE Conference on Decision and Control (CDC) (Dec 15–17, 2014), pp. 5813–5818Google Scholar
  32. 32.
    Z. Shi, H.I. Nurdin, Optimization of distributed entanglement generated between two Gaussian fields by the modified steepest descent method, in Proceedings of the 2015 American Control Conference (ACC) (Jul 1–3, 2015), pp. 2697–2702Google Scholar
  33. 33.
    Z. Shi, H.I. Nurdin, Local optimality of a coherent feedback scheme for distributed entanglement generation: the idealized infinite bandwidth limit, in Proceedings of the 54th IEEE Conference on Decision and Control (CDC) (Dec 15–18, 2015), pp. 7755–7760Google Scholar
  34. 34.
    Y. Zhou, X. Jia, F. Li, J. Yu, C. Xie, K. Peng, Quantum coherent feedback control for generation system of optical entangled state. Sci. Rep. 5, 11132 (2015)CrossRefGoogle Scholar
  35. 35.
    D. Wang, C. Xia, Q. Wang, Y. Wu, F. Liu, Y. Zhang, M. Xiao, Feedback-optimized extraordinary optical transmission of continuous-variable entangled states. Phys. Rev. B 91, 121406(R) (2015)CrossRefGoogle Scholar
  36. 36.
    Z. Shi, H.I. Nurdin, Entanglement in a linear coherent feedback chain of nondegenerate optical parametric amplifiers. Quant. Inf. Comput. 15(13–14), 1141–1164 (2015)MathSciNetGoogle Scholar
  37. 37.
    Z. Shi, H.I. Nurdin, Formulae for entanglement in a linear coherent feedback network of multiple nondegenerate optical parametric amplifiers: the infinite bandwidth case, in Proceedings of the 2016 American Control Conference (ACC) (Jul 6–8, 2016), pp. 4769–4774Google Scholar
  38. 38.
    V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)CrossRefzbMATHGoogle Scholar
  39. 39.
    C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmermann, On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980)CrossRefGoogle Scholar
  40. 40.
    M. Tsang, C.M. Caves, Coherent quantum-noise cancellation for optomechanical sensors. Phys. Rev. Lett. 105, 123601 (2010)CrossRefGoogle Scholar
  41. 41.
    H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices (Springer, Berlin, 2012)CrossRefGoogle Scholar
  42. 42.
    E.M. Komar, M. Kessler, L. Bishof, A.S. Jiang, J. Sorensen, Ye, M.D. Lukin, A quantum network of clocks. Nat. Phys. 10, 582–587 (2014)CrossRefGoogle Scholar
  43. 43.
    N. Yamamoto, Coherent versus measurement feedback: linear systems theory for quantum information. Phys. Rev. X 4, 041029 (2014)Google Scholar
  44. 44.
    Y. Yokotera, N. Yamamoto, Geometric control theory for quantum back-action evasion. EPJ Quantum Technol. 3(15), 1–22 (2016)Google Scholar
  45. 45.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)CrossRefGoogle Scholar
  46. 46.
    N. Yamamoto, M.R. James, Zero dynamics principle for perfect quantum memory in linear networks. New J. Phys. 16, 073032 (2014)MathSciNetCrossRefGoogle Scholar
  47. 47.
    D.A. Lidar, K.B. Whaley, Decoherence-free subspaces and subsystems, in Irreversible Quantum Dynamics. Lecture Notes in Physics, vol. 622 (2003), p. 83Google Scholar
  48. 48.
    D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)CrossRefGoogle Scholar
  49. 49.
    I. Novikov, A.V. Gorshkov, D.F. Phillips, A.S. Sorensen, M.D. Lukin, R.L. Walsworth, Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007)CrossRefGoogle Scholar
  50. 50.
    A.V. Gorshkov, A. Andre, M.D. Lukin, A.S. Sorensen, Photon storage in lambda-type optically dense atomic media I. Cavity model. Phys. Rev. A 76, 033804 (2007)CrossRefGoogle Scholar
  51. 51.
    Q. Xu, P. Dong, M. Lipson, Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys. 3, 406–410 (2007)CrossRefGoogle Scholar
  52. 52.
    J. Yoshikawa, K. Makino, S. Kurata, P. van Loock, P,A. Furusawa, Creation, storage, and on-demand release of optical quantum states with a negative Wigner function. Phys. Rev. X 3, 041028 (2013)Google Scholar
  53. 53.
    N. Yamamoto, Decoherence-free linear quantum subsystems. IEEE Trans. Autom. Control 59(7), 1845–1857 (2014)MathSciNetCrossRefGoogle Scholar
  54. 54.
    M. Hush, A.R.R. Carvalho, M. Hedges, M.R. James, Analysis of the operation of gradient echo memories using a quantum input-output model. New J. Phys. 15, 085020 (2013)CrossRefGoogle Scholar
  55. 55.
    N. Yamamoto, H.I. Nurdin, M.R. James, Quantum state transfer for multi-input linear quantum systems, in Proceedings of the 55th IEEE Conference on Decision and Control (CDC) (Dec 15–17, 2014) (2016)Google Scholar
  56. 56.
    C.A. Muschik, K. Hammerer, E.S. Polzik, J.I. Cirac, Efficient quantum memory and entanglement between light and an atomic ensemble using magnetic field. Phys. Rev. A 73, 062329 (2006)CrossRefGoogle Scholar
  57. 57.
    Q.Y. He, M.D. Reid, E. Giacobino, J. Cviklinski, P.D. Drummond, Dynamical oscillator-cavity model for quantum memories. Phys. Rev. A 79, 022310 (2009)CrossRefGoogle Scholar
  58. 58.
    Y. Wang, J. Minar, G. Hetet, V. Scarani, Quantum memory with a single two-level atom in a half cavity. Phys. Rev. A 85, 013823 (2012)CrossRefGoogle Scholar
  59. 59.
    S.A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, C. Kurtsiefer, Excitation of a single atom with exponentially rising light pulses. Phys. Rev. Lett. 111, 103001 (2013)CrossRefGoogle Scholar
  60. 60.
    M. Bader, S. Heugel, A.L. Chekhov, M. Sondermann, G. Leuchs, Efficient coupling to an optical resonator by exploiting time-reversal symmetry. New J. Phys. 15, 123008 (2013)CrossRefGoogle Scholar
  61. 61.
    G.K. Gulati, B. Srivathsan, B. Chng, A. Cere, D. Matsukevich, C. Kurtsiefer, Generation of an exponentially rising single-photon field from parametric conversion in atoms. Phys. Rev. A 90, 033819 (2014)CrossRefGoogle Scholar
  62. 62.
    H. Ogawa, H. Ohdan, K. Miyata, M. Taguchi, K. Makino, H. Yonezawa, J. Yoshikawa, A. Furusawa, Real-time quadrature measurement of a single-photon wavepacket with continuous temporal-mode-matching. Phys. Rev. Lett. 116, 233602 (2016)CrossRefGoogle Scholar
  63. 63.
    H.S. Black, Inventing the negative feedback amplifier. IEEE Spectr. 14, 55 (1977)CrossRefGoogle Scholar
  64. 64.
    H.S. Black, Stabilized feedback amplifiers. Proc. IEEE 72, 716–722 (1984)CrossRefGoogle Scholar
  65. 65.
    N. Yamamoto, Quantum feedback amplification. Phys. Rev. Appl. 5, 044012 (2016), Reprinted, with permission, \(\copyright \) (2016) by the American Physical SocietyGoogle Scholar
  66. 66.
    A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. Manucharyan, L. Frunzio, D.E. Prober, R.J. Schoelkopf, S.M. Girvin, M.H. Devoret, Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010)CrossRefGoogle Scholar
  68. 68.
    H.M. Chrzanowski, N. Walk, S.M. Assad, J. Janousek, S. Hosseini, T.C. Ralph, T. Symul, P.K. Lam, Measurement-based noiseless linear amplification for quantum communication. Nat. Photonics 8, 333–338 (2014)CrossRefGoogle Scholar
  69. 69.
    F. Hudelist, J. Kong, C. Liu, J. Jing, Z.Y. Ou, W. Zhang, Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014)CrossRefGoogle Scholar
  70. 70.
    A. Metelmann, A.A. Clerk, Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014)CrossRefGoogle Scholar
  71. 71.
    J. Gough, R. Gohm, M. Yanagisawa, Linear quantum feedback networks. Phys. Rev. A 78, 061204 (2008)Google Scholar
  72. 72.
    H.A. Haus, J.A. Mullen, Quantum noise in linear amplifiers. Phys. Rev. 128, 2407–2413 (1962)CrossRefGoogle Scholar
  73. 73.
    C.M. Caves, Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982)CrossRefGoogle Scholar
  74. 74.
    R. Inoue, S. Tanaka, R. Namiki, T. Sagawa, Y. Takahashi, Unconditional quantum-noise supression via measurement-based quantum feedback. Phys. Rev. Lett. 110, 163602 (2013)CrossRefGoogle Scholar
  75. 75.
    C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, S. Haroche, Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011)CrossRefGoogle Scholar
  76. 76.
    R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77–80 (2012)CrossRefGoogle Scholar
  77. 77.
    S. Shankar, M. Hatridge, Z. Leghtas, K.M. Sliwa, A. Narla, U. Vool, S.M. Girvin, L. Frunzio, M. Mirrahimi, M.H. Devoret, Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504, 419–422 (2013)CrossRefGoogle Scholar
  78. 78.
    J. Kerckhoff, R.W. Andrews, H.S. Ku, W.F. Kindel, K. Cicak, R.W. Simmonds, K.W. Lehnert, Tunable coupling to a mechanical oscillator circuit using a coherent feedback network. Phys. Rev. X 3, 021013 (2013)Google Scholar
  79. 79.
    D.J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, T.J. Kippenberg, Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015)CrossRefGoogle Scholar
  80. 80.
    H. Nakao, N. Yamamoto, Optimal control for perfect state transfer in linear quantum memory, J. Phys. B: At. Mol. Opt. Phys. 50, 065501 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsUNSW AustraliaSydneyAustralia
  2. 2.Department of Applied Physics and Physico-InformaticsKeio UniversityYokohamaJapan

Personalised recommendations