Skip to main content

Linear Systems and Control Theory for Quantum Information

  • Chapter
  • First Online:
Linear Dynamical Quantum Systems

Part of the book series: Communications and Control Engineering ((CCE))

  • 1173 Accesses

Abstract

This chapter illustrates several example applications of the theory of linear quantum systems to the analysis of problems of interest in quantum information processing and discusses two experimental demonstrations of real-time coherent feedback and measurement-based feedback control from the literature. The problems covered are dissipative generation of Gaussian states of single-mode oscillators, efficient enhancement of entanglement between traveling Gaussian fields, back-action evasion, perfect state transfer in a linear quantum network, and robust quantum amplification. The two experiments are demonstrations of enhancement of optical squeezing via static coherent feedback and generation of a spin-squeezed state in an atomic ensemble via measurement-based feedback control.

Section 6.1 contains reprinted excerpt with permission from [10]. Copyright (2012) by the American Physical Society.

Section 6.2 contains some materials reprinted from [22] with permission of Springer.

Section 6.5 contains reprinted excerpt with permission from [65]. Copyright (2016) by the American Physical Society.

Section 6.6 contains some materials reprinted, with permission, from [21] \(\copyright \) 2012 IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [24, 25] for experiments on the entanglement produced by cascading two or more NOPAs.

References

  1. S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Furusawa, P. van Loock, Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Wiley-VCH, Berlin, 2011)

    Book  Google Scholar 

  3. N.C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T.C. Ralph, M.A. Nielsen, Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)

    Article  Google Scholar 

  4. N.C. Menicucci, S.T. Flammia, P. van Loock, Graphical calculus for Gaussian pure states. Phys. Rev. A 83, 042335 (2011)

    Article  Google Scholar 

  5. J.F. Poyatos, J.I. Cirac, P. Zoller, Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728 (1996)

    Article  Google Scholar 

  6. N. Yamamoto, Parametrization of the feedback Hamiltonian realizing a pure steady state. Phys. Rev. A 72, 024104 (2005)

    Article  Google Scholar 

  7. B. Kraus, H.P. Buchler, S. Diehl, A. Kantian, A. Micheli, P. Zoller, Preparation of entangled state by quantum Markov processes. Phys. Rev. A. 78, 042307 (2008)

    Article  Google Scholar 

  8. F. Verstraete, M.M. Wolf, J.I. Cirac, Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009)

    Article  Google Scholar 

  9. K. Vollbrecht, C.A. Muschik, J.I. Cirac, Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107, 120502 (2011)

    Article  Google Scholar 

  10. K. Koga, N. Yamamoto, Dissipation-induced pure Gaussian state. Phys. Rev. A 85, 022103 (2012), Reprinted, with permission, \(\copyright \) (2012) by the American Physical Society

    Google Scholar 

  11. N. Yamamoto, Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach. Philos Trans. R. Soc. A 370, 5324–5337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Simon, E.C.G. Sudarshan, N. Mukunda, Gaussian pure states in quantum mechanics and the symplectic group. Phys. Rev. A 37, 3028–3038 (1988)

    Article  MathSciNet  Google Scholar 

  13. Y. Ikeda, N. Yamamoto, Deterministic generation of Gaussian pure states in a quasilocal dissipative system. Phys. Rev. A 87, 033802 (2013)

    Article  Google Scholar 

  14. O. Techakesari, H.I. Nurdin, On the quasi-balanceable class of linear quantum stochastic systems. Syst. Control Lett. 78, 25–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.I. Nurdin, Structures and transformations for model reduction of linear quantum stochastic systems. IEEE Trans. Autom. Control 59(9), 2413–2425 (2014)

    Article  MathSciNet  Google Scholar 

  16. T. Tufarelli, A. Ferraro, A. Serafini, S. Bose, M.S. Kim, Coherently opening a high-Q cavity. Phys. Rev. Lett. 112, 133605 (2014)

    Article  Google Scholar 

  17. J. Ma, X. Wang, C.P. Sun, F. Nori, Quantum spin squeezing. Phys. Rep. 509, 89–165 (2011)

    Article  MathSciNet  Google Scholar 

  18. M. Yanagisawa, H. Kimura, Transfer function approach to quantum control - part ii: control concepts and applications. IEEE Trans. Autom. Control 48(12), 2121–2132 (2003)

    Article  Google Scholar 

  19. J.E. Gough, S. Wildfeuer, Enhancement of field squeezing using coherent feedback. Phys. Rev. A 80, 042107 (2009)

    Article  Google Scholar 

  20. O. Crisafulli, N. Tezak, D.B.S. Soh, M.A. Armen, H. Mabuchi, Squeezed light in an optical parametric amplifier oscillator network with coherent feedback quantum control. Opt. Express 21, 18371–18386 (2013)

    Article  Google Scholar 

  21. S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, A. Furusawa, Experimental demonstration of coherent feedback control on optical field squeezing. IEEE Trans. Autom. Control 57(8), 2045–2050. Reprinted, with permission, \(\copyright \) 2012 IEEE (2012)

    Google Scholar 

  22. Z. Shi, H.I. Nurdin, Coherent feedback enabled distributed generation of entanglement between propagating Gaussian fields. Quant. Inf. Process. 14, 337–359 (2015). \(\copyright \) 2014 Springer. Reprinted, with permission of Springer

    Google Scholar 

  23. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  24. W.P. He, F.L. Li, Generation of broadband entangled light through cascading nondegenerate optical parametric amplifiers. Phys. Rev. A 76, 012328 (2007)

    Article  Google Scholar 

  25. Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, K. Peng, Cascaded entanglement enhancement. Phys. Rev. A 85, 040305(R) (2012)

    Article  Google Scholar 

  26. B.C. Jacobs, T.B. Pittman, J.D. Franson, Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002)

    Article  Google Scholar 

  27. W. Michiels, S.I. Niculescu, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Advances in Design and Control (Society of Industrial and Applied Mathematics, 2007)

    Google Scholar 

  28. K. Engelborghs, T. Luzyanina, G. Samaey, DDE-BIFTOOL vol. 2.00: A Matlab package for bifurcation analysis of delay differential equations. Department of Computer Science, Katholieke Universiteit Leuven, Belgium, Technical Report TW-330 (2001)

    Google Scholar 

  29. K. Engelborghs, T. Luzyanina, D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Di Loreto, M. Dao, L. Jaulin, J.-F. Lafay, J.J. Loiseau, Applied interval computation: a new approach for time-delays systems analysis, in Applications of Time Delay Systems, ed. J. Chiasson, J.J. Loiseau (Springer, Berlin 2007)

    Google Scholar 

  31. Z. Shi, H.I. Nurdin, Effect of phase shifts on EPR entanglement generated on two propagating Gaussian fields via coherent feedback, in Proceedings of the 53rd IEEE Conference on Decision and Control (CDC) (Dec 15–17, 2014), pp. 5813–5818

    Google Scholar 

  32. Z. Shi, H.I. Nurdin, Optimization of distributed entanglement generated between two Gaussian fields by the modified steepest descent method, in Proceedings of the 2015 American Control Conference (ACC) (Jul 1–3, 2015), pp. 2697–2702

    Google Scholar 

  33. Z. Shi, H.I. Nurdin, Local optimality of a coherent feedback scheme for distributed entanglement generation: the idealized infinite bandwidth limit, in Proceedings of the 54th IEEE Conference on Decision and Control (CDC) (Dec 15–18, 2015), pp. 7755–7760

    Google Scholar 

  34. Y. Zhou, X. Jia, F. Li, J. Yu, C. Xie, K. Peng, Quantum coherent feedback control for generation system of optical entangled state. Sci. Rep. 5, 11132 (2015)

    Article  Google Scholar 

  35. D. Wang, C. Xia, Q. Wang, Y. Wu, F. Liu, Y. Zhang, M. Xiao, Feedback-optimized extraordinary optical transmission of continuous-variable entangled states. Phys. Rev. B 91, 121406(R) (2015)

    Article  Google Scholar 

  36. Z. Shi, H.I. Nurdin, Entanglement in a linear coherent feedback chain of nondegenerate optical parametric amplifiers. Quant. Inf. Comput. 15(13–14), 1141–1164 (2015)

    MathSciNet  Google Scholar 

  37. Z. Shi, H.I. Nurdin, Formulae for entanglement in a linear coherent feedback network of multiple nondegenerate optical parametric amplifiers: the infinite bandwidth case, in Proceedings of the 2016 American Control Conference (ACC) (Jul 6–8, 2016), pp. 4769–4774

    Google Scholar 

  38. V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)

    Book  MATH  Google Scholar 

  39. C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmermann, On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980)

    Article  Google Scholar 

  40. M. Tsang, C.M. Caves, Coherent quantum-noise cancellation for optomechanical sensors. Phys. Rev. Lett. 105, 123601 (2010)

    Article  Google Scholar 

  41. H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices (Springer, Berlin, 2012)

    Book  Google Scholar 

  42. E.M. Komar, M. Kessler, L. Bishof, A.S. Jiang, J. Sorensen, Ye, M.D. Lukin, A quantum network of clocks. Nat. Phys. 10, 582–587 (2014)

    Article  Google Scholar 

  43. N. Yamamoto, Coherent versus measurement feedback: linear systems theory for quantum information. Phys. Rev. X 4, 041029 (2014)

    Google Scholar 

  44. Y. Yokotera, N. Yamamoto, Geometric control theory for quantum back-action evasion. EPJ Quantum Technol. 3(15), 1–22 (2016)

    Google Scholar 

  45. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  Google Scholar 

  46. N. Yamamoto, M.R. James, Zero dynamics principle for perfect quantum memory in linear networks. New J. Phys. 16, 073032 (2014)

    Article  MathSciNet  Google Scholar 

  47. D.A. Lidar, K.B. Whaley, Decoherence-free subspaces and subsystems, in Irreversible Quantum Dynamics. Lecture Notes in Physics, vol. 622 (2003), p. 83

    Google Scholar 

  48. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783 (2001)

    Article  Google Scholar 

  49. I. Novikov, A.V. Gorshkov, D.F. Phillips, A.S. Sorensen, M.D. Lukin, R.L. Walsworth, Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007)

    Article  Google Scholar 

  50. A.V. Gorshkov, A. Andre, M.D. Lukin, A.S. Sorensen, Photon storage in lambda-type optically dense atomic media I. Cavity model. Phys. Rev. A 76, 033804 (2007)

    Article  Google Scholar 

  51. Q. Xu, P. Dong, M. Lipson, Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys. 3, 406–410 (2007)

    Article  Google Scholar 

  52. J. Yoshikawa, K. Makino, S. Kurata, P. van Loock, P,A. Furusawa, Creation, storage, and on-demand release of optical quantum states with a negative Wigner function. Phys. Rev. X 3, 041028 (2013)

    Google Scholar 

  53. N. Yamamoto, Decoherence-free linear quantum subsystems. IEEE Trans. Autom. Control 59(7), 1845–1857 (2014)

    Article  MathSciNet  Google Scholar 

  54. M. Hush, A.R.R. Carvalho, M. Hedges, M.R. James, Analysis of the operation of gradient echo memories using a quantum input-output model. New J. Phys. 15, 085020 (2013)

    Article  Google Scholar 

  55. N. Yamamoto, H.I. Nurdin, M.R. James, Quantum state transfer for multi-input linear quantum systems, in Proceedings of the 55th IEEE Conference on Decision and Control (CDC) (Dec 15–17, 2014) (2016)

    Google Scholar 

  56. C.A. Muschik, K. Hammerer, E.S. Polzik, J.I. Cirac, Efficient quantum memory and entanglement between light and an atomic ensemble using magnetic field. Phys. Rev. A 73, 062329 (2006)

    Article  Google Scholar 

  57. Q.Y. He, M.D. Reid, E. Giacobino, J. Cviklinski, P.D. Drummond, Dynamical oscillator-cavity model for quantum memories. Phys. Rev. A 79, 022310 (2009)

    Article  Google Scholar 

  58. Y. Wang, J. Minar, G. Hetet, V. Scarani, Quantum memory with a single two-level atom in a half cavity. Phys. Rev. A 85, 013823 (2012)

    Article  Google Scholar 

  59. S.A. Aljunid, G. Maslennikov, Y. Wang, H.L. Dao, V. Scarani, C. Kurtsiefer, Excitation of a single atom with exponentially rising light pulses. Phys. Rev. Lett. 111, 103001 (2013)

    Article  Google Scholar 

  60. M. Bader, S. Heugel, A.L. Chekhov, M. Sondermann, G. Leuchs, Efficient coupling to an optical resonator by exploiting time-reversal symmetry. New J. Phys. 15, 123008 (2013)

    Article  Google Scholar 

  61. G.K. Gulati, B. Srivathsan, B. Chng, A. Cere, D. Matsukevich, C. Kurtsiefer, Generation of an exponentially rising single-photon field from parametric conversion in atoms. Phys. Rev. A 90, 033819 (2014)

    Article  Google Scholar 

  62. H. Ogawa, H. Ohdan, K. Miyata, M. Taguchi, K. Makino, H. Yonezawa, J. Yoshikawa, A. Furusawa, Real-time quadrature measurement of a single-photon wavepacket with continuous temporal-mode-matching. Phys. Rev. Lett. 116, 233602 (2016)

    Article  Google Scholar 

  63. H.S. Black, Inventing the negative feedback amplifier. IEEE Spectr. 14, 55 (1977)

    Article  Google Scholar 

  64. H.S. Black, Stabilized feedback amplifiers. Proc. IEEE 72, 716–722 (1984)

    Article  Google Scholar 

  65. N. Yamamoto, Quantum feedback amplification. Phys. Rev. Appl. 5, 044012 (2016), Reprinted, with permission, \(\copyright \) (2016) by the American Physical Society

    Google Scholar 

  66. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. Manucharyan, L. Frunzio, D.E. Prober, R.J. Schoelkopf, S.M. Girvin, M.H. Devoret, Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010)

    Article  Google Scholar 

  68. H.M. Chrzanowski, N. Walk, S.M. Assad, J. Janousek, S. Hosseini, T.C. Ralph, T. Symul, P.K. Lam, Measurement-based noiseless linear amplification for quantum communication. Nat. Photonics 8, 333–338 (2014)

    Article  Google Scholar 

  69. F. Hudelist, J. Kong, C. Liu, J. Jing, Z.Y. Ou, W. Zhang, Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014)

    Article  Google Scholar 

  70. A. Metelmann, A.A. Clerk, Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014)

    Article  Google Scholar 

  71. J. Gough, R. Gohm, M. Yanagisawa, Linear quantum feedback networks. Phys. Rev. A 78, 061204 (2008)

    Google Scholar 

  72. H.A. Haus, J.A. Mullen, Quantum noise in linear amplifiers. Phys. Rev. 128, 2407–2413 (1962)

    Article  Google Scholar 

  73. C.M. Caves, Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982)

    Article  Google Scholar 

  74. R. Inoue, S. Tanaka, R. Namiki, T. Sagawa, Y. Takahashi, Unconditional quantum-noise supression via measurement-based quantum feedback. Phys. Rev. Lett. 110, 163602 (2013)

    Article  Google Scholar 

  75. C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, S. Haroche, Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73–77 (2011)

    Article  Google Scholar 

  76. R. Vijay, C. Macklin, D.H. Slichter, S.J. Weber, K.W. Murch, R. Naik, A.N. Korotkov, I. Siddiqi, Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77–80 (2012)

    Article  Google Scholar 

  77. S. Shankar, M. Hatridge, Z. Leghtas, K.M. Sliwa, A. Narla, U. Vool, S.M. Girvin, L. Frunzio, M. Mirrahimi, M.H. Devoret, Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504, 419–422 (2013)

    Article  Google Scholar 

  78. J. Kerckhoff, R.W. Andrews, H.S. Ku, W.F. Kindel, K. Cicak, R.W. Simmonds, K.W. Lehnert, Tunable coupling to a mechanical oscillator circuit using a coherent feedback network. Phys. Rev. X 3, 021013 (2013)

    Google Scholar 

  79. D.J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, T.J. Kippenberg, Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015)

    Article  Google Scholar 

  80. H. Nakao, N. Yamamoto, Optimal control for perfect state transfer in linear quantum memory, J. Phys. B: At. Mol. Opt. Phys. 50, 065501 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra I. Nurdin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nurdin, H.I., Yamamoto, N. (2017). Linear Systems and Control Theory for Quantum Information. In: Linear Dynamical Quantum Systems. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55201-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55201-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55199-9

  • Online ISBN: 978-3-319-55201-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics