Advertisement

Feedback Control of Linear Dynamical Quantum Systems

  • Hendra I. NurdinEmail author
  • Naoki Yamamoto
Chapter
Part of the Communications and Control Engineering book series (CCE)

Abstract

This chapter introduces and treats the topic of quantum feedback control on linear quantum systems. Two distinct approaches to feedback control of quantum systems are considered: measurement-based feedback control and coherent feedback control. For measurement-based feedback control, the notions of controlled Hudson–Parthasarathy QSDEs and controlled quantum filtering equations are introduced. Three control problems are formulated and solved: measurement-based linear quadratic Gaussian control, coherent linear quadratic Gaussian control, and coherent feedback \(H^{\infty }\) control. Examples are provided to illustrate each control method.

Keywords

Linear Matrix Inequality Optical Cavity Disturbance Attenuation Controller Synthesis Classical Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Bouten, Filtering and control in quantum optics, Ph.D. dissertation, Catholic University of Nijmegen (2004)Google Scholar
  2. 2.
    L. Bouten, R. van Handel, On the separation principle of quantum control, in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), ed. by V.P. Belavkin, M. Guta (World Scientific, Singapore, 2008), pp. 206–238CrossRefGoogle Scholar
  3. 3.
    J. Gough, M.R. James, The series product and its application to quantum feedforward and feedback networks. IEEE Trans. Autom. Control 54(11), 2530–2544 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D.A. Steck, K. Jacobs, H. Mabuchi, S. Habib, T. Bhattacharya, Feedback cooling of atomic motion in cavity QED. Phys. Rev. A 74, 012322 (2006)CrossRefGoogle Scholar
  5. 5.
    A.C. Doherty, K. Jacobs, Feedback-control of quantum systems using continuous state-estimation. Phys. Rev. A 60, 2700 (1999)CrossRefGoogle Scholar
  6. 6.
    R. Hamerly, H. Mabuchi, Advantages of coherent feedback for cooling quantum oscillators. Phys. Rev. Lett. 109, 173602 (2012)CrossRefGoogle Scholar
  7. 7.
    A.H. Jazwinski, Stochastic Processes and Filtering Theory (Academic Press, New York, 1970)zbMATHGoogle Scholar
  8. 8.
    A. Bagchi, Optimal Control of Stochastic Systems. International Series in Systems and Control Engineering (Prentice Hall, Upper Saddle River, 1993)Google Scholar
  9. 9.
    W.L. Brogan, Modern Control Theory, 3rd edn. (Prentice-Hall, Upper Saddle River, 1991)zbMATHGoogle Scholar
  10. 10.
    K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, Upper Saddle River, 1995)Google Scholar
  11. 11.
    V.P. Belavkin, S.C. Edwards, Quantum filtering and optimal control, in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), ed. by V.P. Belavkin, M. Guta (World Scientific, Singapore, 2008), pp. 143–205CrossRefGoogle Scholar
  12. 12.
    H.I. Nurdin, M.R. James, I.R. Petersen, Coherent quantum LQG control. Automatica 45, 1837–1846 (2009) \(\copyright \) 2009 Reprinted, with permission from ElsevierGoogle Scholar
  13. 13.
    G. Zhang, M.R. James, Direct and indirect couplings in coherent feedback control of linear quantum systems. IEEE Trans. Autom. Control 56(7), 1535–1550 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    I.G. Vladimirov, I.R. Petersen, A gradient descent approach to optimal coherent quantum LQG controller design, in Proceedings of the 2015 American Control Conference (ACC) (2015), pp. 1487–1492Google Scholar
  15. 15.
    A.K. Sichani, I.G. Vladimirov, I.R. Petersen, A gradient descent approach to optimal coherent quantum LQG controller design, in Proceedings of the 2015 American Control Conference (ACC) (2015), pp. 1487–1492Google Scholar
  16. 16.
    C.W. Scherer, P. Gahinet, M. Chilali, Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control 42(7), 896–911 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Y. Nesterov, A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming (SIAM, Philadelphia, 1994)CrossRefzbMATHGoogle Scholar
  18. 18.
    S. Boyd, L. Vanderberghe, Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization, in Communications, Computation, Control and Signal Processing - A Tribute to Thomas Kailath, ed. by A. Paulraj, V. Roywhcowdhury, C. Schaper (Kluwer Academic Publishers, New York, 1997)Google Scholar
  19. 19.
    R. Orsi, U. Helmke, J.B. Moore, A Newton-like method for solving rank constrained linear matrix inequalities. Automatica 42(11), 1875–1882 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Kojima, Sums of squares relaxations of polynomial semidefinite programs. Department of Mathematics and Computer Science, Tokyo Institute of Technology, Tokyo, Japan. Technical report B-397 (2003)Google Scholar
  22. 22.
    C.W.J. Hol, C. Scherer, Sum of squares relaxations for polynomial semidefinite programming, in Proceedings of the 16th International Symposium on Mathematical Theory and Networks (MTNS) 2004 (Leuven, Belgium, July 5–9, 2004) (2004)Google Scholar
  23. 23.
    D. Henrion, J.B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback. IEEE Trans. Autom. Control 51(2), 192–202 (2006)Google Scholar
  24. 24.
    R. Orsi, LMIRank: Software for Rank Constrained LMI Problems (2005), http://rsise.anu.edu.au/~robert/lmirank/
  25. 25.
    J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan (2004), http://control.ee.ethz.ch/~joloef/yalmip.php
  26. 26.
    Advanced Optimization Lab, McMaster University: SeDuMi v1.1R3 (2006), http://sedumi.mcmaster.ca/
  27. 27.
    H. Bachor, T. Ralph, A Guide to Experiments in Quantum Optics, 2nd edn. (Wiley-VCH, Weinheim, 2004)CrossRefGoogle Scholar
  28. 28.
    C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd edn. (Springer, Berlin, 2004)zbMATHGoogle Scholar
  29. 29.
    K. Jacobs, H.I. Nurdin, F.W. Strauch, M.R. James, Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: analytical results in the regime of ground-state cooling. Phys. Rev. A 91, 043812 (2015)CrossRefGoogle Scholar
  30. 30.
    J.C. Doyle, K. Glover, P.P. Khargonekar, B. Francis, State-space solutions to the standard \({H}_2\) and \({H}_\infty \) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    I. Petersen, B. Anderson, E. Jonckheere, A first principles solution to the non-singular \({H}^\infty \) control problem. Int. J. Robust Nonlinear Control 1(3), 171–185 (1991)CrossRefzbMATHGoogle Scholar
  32. 32.
    C.W. Scherer, Multiobjective \({H}_2/{H}_\infty \) control. IEEE Trans. Autom. Control 40(6), 1054–1062 (1995)CrossRefzbMATHGoogle Scholar
  33. 33.
    J. Helton, M. James, Extending \({H}^\infty \) Control to Nonlinear Systems: Control of Nonlinear Systems to Achieve Performance Objectives, Advances in Design and Control, vol. 1 (SIAM, Philadelphia, 1999)Google Scholar
  34. 34.
    M.R. James, H.I. Nurdin, I.R. Petersen, \(H^{\infty }\) control of linear quantum stochastic systems. IEEE Trans. Autom. Control 53(8), 1787–1803 (2008) Reprinted, with permission, \(\copyright \) 2008 IEEEGoogle Scholar
  35. 35.
    J. Willems, Dissipative dynamical systems - Part I: general theory. Arch. Rational Mech. Anal. 45, 321–351 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    P. Dupuis, M. James, I. Petersen, Robust properties of risk-sensitive control. Math. Control Syst. Signals 13, 318–332 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    C. D’Helon, M.R. James, Stability, gain, and robustness in quantum feedback networks. Phys. Rev. A 73, 053803 (2006)CrossRefGoogle Scholar
  38. 38.
    A. van der Schaft, \(L_2\)-Gain and Passivity Techniques in Nonlinear Control (Springer, New York, 1996)Google Scholar
  39. 39.
    S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)Google Scholar
  40. 40.
    K. Zhou, P. Khargonekar, An algebraic Riccati equation approach to \({H}_\infty \) optimization. Syst. Control Lett. 11, 85–91 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    M. Green, D. Limebeer, Linear Robust Cotrol (Prentice-Hall, Englewood Cliffs, 1995)zbMATHGoogle Scholar
  42. 42.
    H. Mabuchi, Coherent-feedback quantum control with a dynamic compensator. Phys. Rev. A 78, 032323 (2008)CrossRefGoogle Scholar
  43. 43.
    M. Sarovar, D.B.S. Soh, J. Cox, C. Brif, C.T. DeRose, R. Camacho, P. Davids, Silicon nanophotonics for scalable quantum coherent feedback networks. EPJ Quantum Technol. 3(14), 1–18 (2016)Google Scholar
  44. 44.
    H.I. Nurdin, Topics in classical and quantum linear stochastic systems, Ph.D. dissertation, The Australian National University (2007)Google Scholar
  45. 45.
    H.I. Nurdin, Network synthesis of mixed quantum-classical linear stochastic systems, in Proceedings of the 2011 Australian Control Conference (AUCC), Engineers Australia (2011), pp. 68–75Google Scholar
  46. 46.
    S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Synthesis and structure of mixed quantum-classical linear systems, in Proceedings of the 51st IEEE Conference on Decision and Control (Maui, Hawaii, Dec. 10–13, 2012) (2012), pp. 1093–1098Google Scholar
  47. 47.
    S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Network synthesis for a class of mixed quantum-classical linear stochastic systems (2014), arXiv:1403.6928 (arXiv preprint)
  48. 48.
    S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Quantum optical realization of classical linear stochastic systems. Automatica 49(10), 3090–3096 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    S. Vuglar, I.R. Petersen, How many quantum noises need to be added to make an LTI system physically realizable? in Proceedings of the 2011 Australian Control Conference (AUCC) (2011), pp. 363–367Google Scholar
  50. 50.
    S. Vuglar, I.R. Petersen, Quantum implemention of an LTI system with the minimal number of additional quantum noise inputs, in Proceedings of the 2013 European Control Conference (ECC) (2013), pp. 2724–2727Google Scholar
  51. 51.
    K.R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhauser, Berlin, 1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsUNSW AustraliaSydneyAustralia
  2. 2.Department of Applied Physics and Physico-InformaticsKeio UniversityYokohamaJapan

Personalised recommendations