Skip to main content

Feedback Control of Linear Dynamical Quantum Systems

  • Chapter
  • First Online:
Linear Dynamical Quantum Systems

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

This chapter introduces and treats the topic of quantum feedback control on linear quantum systems. Two distinct approaches to feedback control of quantum systems are considered: measurement-based feedback control and coherent feedback control. For measurement-based feedback control, the notions of controlled Hudson–Parthasarathy QSDEs and controlled quantum filtering equations are introduced. Three control problems are formulated and solved: measurement-based linear quadratic Gaussian control, coherent linear quadratic Gaussian control, and coherent feedback \(H^{\infty }\) control. Examples are provided to illustrate each control method.

Section 5.2 contains materials reprinted from Automatica [12], with permission from Elsevier.

Section 5.3 and the associated appendices contain materials reprinted, with permission, from [34] \(\copyright \) 2008 IEEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that [12] suggested that a lower LQG cost of 4.444 can be attained by a classical linear controller by measuring \(y''\) with the setting \(\theta =0\) and \(\epsilon \approx 0.715\). This is incorrect and the discrepancy arose out of a coding error therein. However, this error does not negate the findings of [12]. In fact, it only strengthens the conclusion that there can exist a coherent quantum LQG controller which outperforms all classical LQG controllers for the same cost function and actuation structure.

  2. 2.

    This map is distinct from the quantum conditional expectation used in quantum filtering theory.

References

  1. L. Bouten, Filtering and control in quantum optics, Ph.D. dissertation, Catholic University of Nijmegen (2004)

    Google Scholar 

  2. L. Bouten, R. van Handel, On the separation principle of quantum control, in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), ed. by V.P. Belavkin, M. Guta (World Scientific, Singapore, 2008), pp. 206–238

    Chapter  Google Scholar 

  3. J. Gough, M.R. James, The series product and its application to quantum feedforward and feedback networks. IEEE Trans. Autom. Control 54(11), 2530–2544 (2009)

    Article  MathSciNet  Google Scholar 

  4. D.A. Steck, K. Jacobs, H. Mabuchi, S. Habib, T. Bhattacharya, Feedback cooling of atomic motion in cavity QED. Phys. Rev. A 74, 012322 (2006)

    Article  Google Scholar 

  5. A.C. Doherty, K. Jacobs, Feedback-control of quantum systems using continuous state-estimation. Phys. Rev. A 60, 2700 (1999)

    Article  Google Scholar 

  6. R. Hamerly, H. Mabuchi, Advantages of coherent feedback for cooling quantum oscillators. Phys. Rev. Lett. 109, 173602 (2012)

    Article  Google Scholar 

  7. A.H. Jazwinski, Stochastic Processes and Filtering Theory (Academic Press, New York, 1970)

    MATH  Google Scholar 

  8. A. Bagchi, Optimal Control of Stochastic Systems. International Series in Systems and Control Engineering (Prentice Hall, Upper Saddle River, 1993)

    Google Scholar 

  9. W.L. Brogan, Modern Control Theory, 3rd edn. (Prentice-Hall, Upper Saddle River, 1991)

    MATH  Google Scholar 

  10. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, Upper Saddle River, 1995)

    Google Scholar 

  11. V.P. Belavkin, S.C. Edwards, Quantum filtering and optimal control, in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), ed. by V.P. Belavkin, M. Guta (World Scientific, Singapore, 2008), pp. 143–205

    Chapter  Google Scholar 

  12. H.I. Nurdin, M.R. James, I.R. Petersen, Coherent quantum LQG control. Automatica 45, 1837–1846 (2009) \(\copyright \) 2009 Reprinted, with permission from Elsevier

    Google Scholar 

  13. G. Zhang, M.R. James, Direct and indirect couplings in coherent feedback control of linear quantum systems. IEEE Trans. Autom. Control 56(7), 1535–1550 (2011)

    Article  MathSciNet  Google Scholar 

  14. I.G. Vladimirov, I.R. Petersen, A gradient descent approach to optimal coherent quantum LQG controller design, in Proceedings of the 2015 American Control Conference (ACC) (2015), pp. 1487–1492

    Google Scholar 

  15. A.K. Sichani, I.G. Vladimirov, I.R. Petersen, A gradient descent approach to optimal coherent quantum LQG controller design, in Proceedings of the 2015 American Control Conference (ACC) (2015), pp. 1487–1492

    Google Scholar 

  16. C.W. Scherer, P. Gahinet, M. Chilali, Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control 42(7), 896–911 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Nesterov, A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  18. S. Boyd, L. Vanderberghe, Semidefinite programming relaxations of non-convex problems in control and combinatorial optimization, in Communications, Computation, Control and Signal Processing - A Tribute to Thomas Kailath, ed. by A. Paulraj, V. Roywhcowdhury, C. Schaper (Kluwer Academic Publishers, New York, 1997)

    Google Scholar 

  19. R. Orsi, U. Helmke, J.B. Moore, A Newton-like method for solving rank constrained linear matrix inequalities. Automatica 42(11), 1875–1882 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Kojima, Sums of squares relaxations of polynomial semidefinite programs. Department of Mathematics and Computer Science, Tokyo Institute of Technology, Tokyo, Japan. Technical report B-397 (2003)

    Google Scholar 

  22. C.W.J. Hol, C. Scherer, Sum of squares relaxations for polynomial semidefinite programming, in Proceedings of the 16th International Symposium on Mathematical Theory and Networks (MTNS) 2004 (Leuven, Belgium, July 5–9, 2004) (2004)

    Google Scholar 

  23. D. Henrion, J.B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback. IEEE Trans. Autom. Control 51(2), 192–202 (2006)

    Google Scholar 

  24. R. Orsi, LMIRank: Software for Rank Constrained LMI Problems (2005), http://rsise.anu.edu.au/~robert/lmirank/

  25. J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan (2004), http://control.ee.ethz.ch/~joloef/yalmip.php

  26. Advanced Optimization Lab, McMaster University: SeDuMi v1.1R3 (2006), http://sedumi.mcmaster.ca/

  27. H. Bachor, T. Ralph, A Guide to Experiments in Quantum Optics, 2nd edn. (Wiley-VCH, Weinheim, 2004)

    Book  Google Scholar 

  28. C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

  29. K. Jacobs, H.I. Nurdin, F.W. Strauch, M.R. James, Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: analytical results in the regime of ground-state cooling. Phys. Rev. A 91, 043812 (2015)

    Article  Google Scholar 

  30. J.C. Doyle, K. Glover, P.P. Khargonekar, B. Francis, State-space solutions to the standard \({H}_2\) and \({H}_\infty \) control problems. IEEE Trans. Autom. Control 34(8), 831–847 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Petersen, B. Anderson, E. Jonckheere, A first principles solution to the non-singular \({H}^\infty \) control problem. Int. J. Robust Nonlinear Control 1(3), 171–185 (1991)

    Article  MATH  Google Scholar 

  32. C.W. Scherer, Multiobjective \({H}_2/{H}_\infty \) control. IEEE Trans. Autom. Control 40(6), 1054–1062 (1995)

    Article  MATH  Google Scholar 

  33. J. Helton, M. James, Extending \({H}^\infty \) Control to Nonlinear Systems: Control of Nonlinear Systems to Achieve Performance Objectives, Advances in Design and Control, vol. 1 (SIAM, Philadelphia, 1999)

    Google Scholar 

  34. M.R. James, H.I. Nurdin, I.R. Petersen, \(H^{\infty }\) control of linear quantum stochastic systems. IEEE Trans. Autom. Control 53(8), 1787–1803 (2008) Reprinted, with permission, \(\copyright \) 2008 IEEE

    Google Scholar 

  35. J. Willems, Dissipative dynamical systems - Part I: general theory. Arch. Rational Mech. Anal. 45, 321–351 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Dupuis, M. James, I. Petersen, Robust properties of risk-sensitive control. Math. Control Syst. Signals 13, 318–332 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. D’Helon, M.R. James, Stability, gain, and robustness in quantum feedback networks. Phys. Rev. A 73, 053803 (2006)

    Article  Google Scholar 

  38. A. van der Schaft, \(L_2\)-Gain and Passivity Techniques in Nonlinear Control (Springer, New York, 1996)

    Google Scholar 

  39. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)

    Google Scholar 

  40. K. Zhou, P. Khargonekar, An algebraic Riccati equation approach to \({H}_\infty \) optimization. Syst. Control Lett. 11, 85–91 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Green, D. Limebeer, Linear Robust Cotrol (Prentice-Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  42. H. Mabuchi, Coherent-feedback quantum control with a dynamic compensator. Phys. Rev. A 78, 032323 (2008)

    Article  Google Scholar 

  43. M. Sarovar, D.B.S. Soh, J. Cox, C. Brif, C.T. DeRose, R. Camacho, P. Davids, Silicon nanophotonics for scalable quantum coherent feedback networks. EPJ Quantum Technol. 3(14), 1–18 (2016)

    Google Scholar 

  44. H.I. Nurdin, Topics in classical and quantum linear stochastic systems, Ph.D. dissertation, The Australian National University (2007)

    Google Scholar 

  45. H.I. Nurdin, Network synthesis of mixed quantum-classical linear stochastic systems, in Proceedings of the 2011 Australian Control Conference (AUCC), Engineers Australia (2011), pp. 68–75

    Google Scholar 

  46. S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Synthesis and structure of mixed quantum-classical linear systems, in Proceedings of the 51st IEEE Conference on Decision and Control (Maui, Hawaii, Dec. 10–13, 2012) (2012), pp. 1093–1098

    Google Scholar 

  47. S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Network synthesis for a class of mixed quantum-classical linear stochastic systems (2014), arXiv:1403.6928 (arXiv preprint)

  48. S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Quantum optical realization of classical linear stochastic systems. Automatica 49(10), 3090–3096 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Vuglar, I.R. Petersen, How many quantum noises need to be added to make an LTI system physically realizable? in Proceedings of the 2011 Australian Control Conference (AUCC) (2011), pp. 363–367

    Google Scholar 

  50. S. Vuglar, I.R. Petersen, Quantum implemention of an LTI system with the minimal number of additional quantum noise inputs, in Proceedings of the 2013 European Control Conference (ECC) (2013), pp. 2724–2727

    Google Scholar 

  51. K.R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhauser, Berlin, 1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra I. Nurdin .

Appendices

Appendices

Appendix A: Proof of Theorem 5.2

The proof of Theorem 5.2 will use the following lemma.

Lemma 5.4

Consider a real symmetric matrix X and corresponding operator-valued quadratic form \(x^{\top } Xx\) for the system (5.54). Then the following statements are equivalent:

  1. (i)

    There exists a constant \(\lambda \ge 0\) such that \( \langle \rho ,x^{\top }Xx\rangle \le \lambda \) for all Gaussian states \(\rho \).

  2. (ii)

    The matrix X is negative semidefinite.

Proof

\((i) \Rightarrow (ii)\). To establish this part of the lemma, consider a Gaussian state \(\rho \) which has mean \(\bar{x}\) and covariance matrix \(Y=[\mathrm{Tr}(\rho x_ix_j)]\), with symmetrized covariance \(\nicefrac {1}{2}(Y+Y^{\top }) \ge 0\) and \(Y-Y^{\top } =2 \imath \mathbb {J}_n\). Then, we can write

$$\begin{aligned} \langle \rho ,x^{\top } Xx\rangle= & {} \sum _{i=1}^{n}\sum _{j=1}^{n}X_{ij}\langle \rho ,x_i x_j\rangle \nonumber \\= & {} \sum _{i=1}^{n}\sum _{j=1}^{n}X_{ij}[Y_{ij}+\bar{x}_i \bar{x}_j]\nonumber \\= & {} \bar{x}^T X \bar{x} + \mathrm{Tr}[XY]. \end{aligned}$$
(5.88)

Now for any constant \(\alpha > 0\), consider the inequality of part (i) where \(\rho \) is a Gaussian state with mean \(\alpha \bar{x}\) and covariance matrix Y. Then, it follows from the bound \( \langle \rho ,x^{\top }Xx\rangle \le \lambda \) and (5.88) that \( \alpha ^2 \bar{x}^{\top } X \bar{x} + \mathrm{Tr}[XY] \le \lambda \ \) for all \(\alpha > 0\). From this, it immediately follows that \(\bar{x}^{\top } X \bar{x} \le 0\). However, \(\bar{x}\) can be chosen arbitrarily. Hence, we can conclude that condition (ii) of the lemma is satisfied.

\((ii) \Rightarrow (i)\). Suppose that the matrix X is negative semidefinite and let \(\rho \) be any Gaussian state and suppose that \(\rho \) has mean \(\bar{x}\) and covariance matrix \(Y \ge 0\). Then, it follows from (5.88) that \( \langle \rho ,x^{\top } Xx\rangle = \bar{x}^{\top } X \bar{x} + \mathrm{Tr}[XY] \). However, \(X \le 0\), \(Y + Y^{\top } \ge 0\), and \(Y-Y^{\top } =2 \imath \mathbb {J}_n\) implies \(\bar{x}^{\top } X \bar{x} \le 0\), and \(\mathrm{Tr}[XY] = \nicefrac {1}{2}\mathrm{Tr}[X(Y+Y^{\top })] \le 0\). Hence, \(\langle \rho ,x^{\top } Xx\rangle \le 0\) and condition (ii) is satisfied with \(\lambda = 0\). \(\Box \)

Proof of Theorem 5.2. Let the system be dissipative with \(V(x )=x^{\top } X x\). By Itō’s rule, the product table (5.60), and the quantum stochastic differential equation (5.54), we have

$$\begin{aligned}&d\langle V(x(t)) \rangle \nonumber \\&\quad = \langle dx^{\top }(t) X x(t) + x^{\top }(t) X dx(t) + dx^{\top }(t) X dx(t) \rangle \nonumber \\&\quad =\langle x^{\top }(t)({ A}^{\top } X+X{ A}) x(t) + \beta _w^{\top }(t) { B}^{\top } X x(t) + \nonumber \\&\quad \quad x^{\top }(t) X { B} \beta _w(t)+ \lambda _0 \rangle dt, \end{aligned}$$
(5.89)

where \(\lambda _0\) is given by (5.59). We now note that \( \langle V(x(t)) \rangle = \langle \rho , E_0 [ V(x(t)) ] \rangle , \) where \(E_t\) (\(t \ge 0\)) denotes the conditional expectation mapFootnote 2 with respect to the vacuum state \(|\Omega \rangle \) of the field (e.g., see [51, p. 215]), and \(\rho \) is an initial Gaussian state of the system. Combining this with the integral of (5.89) and (5.56) we find that

$$\begin{aligned}&\left\langle \rho , \int _0^t E_0 [ x^{\top }(s)({ A}^{\top } X+X{ A}) x(s) + \beta _w^{\top }(s) { B}^{\top } X x(s) +\right. \\&\qquad \left. x^{\top }(s) X { B} \beta _w(s) + \lambda _0 + r(x(s),\beta _w(s) ] ds \right\rangle \le \lambda t. \end{aligned}$$

Let \(t \rightarrow 0\) to obtain

$$\begin{aligned}&\left\langle \rho , x^{\top }({ A}^{\top }X+X{ A}) x + \beta _w^{\top }{ B}^{\top }X + x^{\top } X{ B}\beta _w + \lambda _0 + \right. \\&\quad \left. [x^{\top } \beta _w^{\top } ] R \left[ \begin{array}{c} x \\ \beta _w \end{array} \right] \right\rangle \le \lambda . \end{aligned}$$

Here, x and \(\beta _w\) denote the initial conditions. An application of Lemma 5.4 implies (5.57). Also, (5.58) is a straightforward consequence of this inequality when \(\mathsf {R}\) is replaced by \(\mathsf {R}+\epsilon I\) where \(\epsilon > 0\).

To establish the converse part of the theorem, we first assume that (5.57) is satisfied. Then with \(V(x) = x^{\top }Xx\), it follows from (5.89) that

$$\begin{aligned} \langle V(x(t)) \rangle - \langle V(x(0)) \rangle + \int _o^t\langle r(x(s),\beta _w(s))\rangle ds \le \lambda _0 t \end{aligned}$$

for all \(t > 0\) and all \(\beta _w(t)\). Hence, inequality (5.56) is satisfied with \(\lambda \) given by (5.59).

If matrix inequality (5.58) is satisfied, then it follows by similar reasoning that there exists an \(\epsilon > 0\) such that

$$\begin{aligned}&\langle V(x(t)) \rangle - \langle V(x(0)) \rangle + \int _0^t\langle r(x(s),\beta _w(s))+ \\&\quad \epsilon (x(s)^{\top }x(s) + \beta _w(s)^{\top }\beta _w(s))\rangle ds \le \lambda _0 t. \end{aligned}$$

Hence, inequality (5.56) is satisfied with \(\lambda =\lambda _0\) given by (5.59) and with \(\mathsf {R}\) replaced by \(\mathsf {R}+\epsilon I\). \(\Box \)

Appendix B: Proof of Lemma 5.2

The proof of Lemma 5.2 will use the following lemma.

Lemma 5.5

If S is a Hermitian matrix, then there is a real constant \(\alpha _0\) such that \(\alpha I + S \ge 0\) for all \(\alpha \ge \alpha _0\).

Proof

Since S is Hermitian, it has real eigenvalues and is diagonalizable. Hence, \(S=V^*EV\) for some real diagonal matrix E and orthogonal matrix V. Now let \(\alpha _0=-\lambda \), where \(\lambda \) is the smallest eigenvalue of S. The result follows since \(\alpha I + S=V^*(\alpha I + E)V\) while \(\alpha I +E \ge 0\) for all \(\alpha \ge \alpha _0\). \(\Box \)

Proof of Lemma 5.2. The main idea is to explicitly construct matrices \(R \in \mathbb {R}^{2n_K \times 2n_K}\), \(\mathsf {K} \in \mathbb {C}^{(n_{v_K}+n_y) \times 2n_K}\), \(B_{K1} \in \mathbb {R}^{2n_K \times 2n_{v_K}}\), and \(B_{K0} \in \mathbb {R}^{2n_u \times 2n_{v_K}}\), with \(n_{v_K} \ge n_u\), such that (see Chap. 2)

$$\begin{aligned} A_K= & {} 2 \mathbb {J}_{n_K} (R+\mathfrak {I}\{\mathsf {K}^*\mathsf {K}\}), \end{aligned}$$
(5.90)
$$\begin{aligned} \left[ \begin{array}{cc} B_{K1}&B_K \end{array} \right]= & {} 2\imath \mathbb {J}_{n_K} [\begin{array}{cc} -\mathsf {K}^*&\mathsf {K}^{\top } \end{array}]\Gamma _{n_{v_K}+n_y}, \end{aligned}$$
(5.91)
$$\begin{aligned} C_K= & {} [\begin{array}{cc} I_{2n_u \times 2n_u}&0_{2n_u \times 2(n_{v_K}+n_y-n_u)} \end{array}]P_{n_{v_K}+n_y}^{\top } \nonumber \\&\times \left[ \begin{array}{c} \mathsf {K}+\mathsf {K}^{\#} \\ -\imath \mathsf {K} + \imath \mathsf {K}^{\#} \end{array} \right] , \end{aligned}$$
(5.92)
$$\begin{aligned} \left[ \begin{array}{cc} B_{K0}&0_{2n_u \times 2(n_{v_K}+n_y)}\end{array}\right]= & {} [\begin{array}{cc} I_{2n_u \times 2n_u}&0_{2n_u \times 2(n_{v_K}+n_y-n_u)}\end{array}], \end{aligned}$$
(5.93)

are satisfied. To this end, let \(Z=\frac{1}{2}\mathbb {J}_{n_K}^{-1}A=-\frac{1}{2}\mathbb {J}_{n_K} A\). We first construct matrices \(\mathsf {K}_{b2}\), \(\mathsf {K}_{b1}\), \(B_{K1,1}\), and \(B_{K1,2}\) according to the following procedure:

  1. 1.

    Construct the matrix \(\mathsf {K}_{b2}\) according to (5.75).

  2. 2.

    Construct a real symmetric \(2n_K \times 2n_K\) matrix \(W_1\) such that the matrix

    $$\begin{aligned} W_2= & {} W_1 \\&\;+\imath \left( \frac{Z-Z^{\top }}{2}-\frac{1}{4}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{cc} 0 &{} I \\ -I &{} 0 \end{array} \right] P_{n_u}C_K -\mathfrak {I}(\mathsf {K}_{b2}^*\mathsf {K}_{b2}) \right) , \end{aligned}$$

    is non-negative definite. It follows from Lemma 5.5 that such a matrix \(W_1\) always exists.

  3. 3.

    Construct a matrix \(\mathsf {K}_{b1}\) such that \(\mathsf {K}_{b1}^* \mathsf {K}_{b1}=W_2\), where \(\mathsf {K}_{b1}\) has at least 1 row. This can be done, for example, using the singular value decomposition of \(W_2\) (in this case, \(\mathsf {K}_{b1}\) will have \(2n_K\) rows).

  4. 4.

    Construct the matrices \(B_{K1,1}\) and \(B_{K1,2}\) according to Eqs. (5.74) and (5.76), respectively.

Let \(R=\frac{1}{2}(Z+Z^{\top })\). We now show that there exists an integer \(n_{v_K} \ge n_u\) such conditions (5.90)–(5.93) are satisfied with the matrix R as defined and with \(B_{K1}=[\begin{array}{cc} B_{K1,1}&B_{K1,2} \end{array}]\) and

$$\begin{aligned} \mathsf {K}=\left[ \begin{array}{c} \nicefrac {1}{2}\left[ \begin{array}{cc} I &{} \imath I \end{array}\right] P_{n_u}C_k \\ \mathsf {K}_{b1} \\ \mathsf {K}_{b2} \end{array} \right] . \end{aligned}$$
(5.94)

First note that necessarily \(n_{v_K} \ge n_u+1 > n_u\) since \(B_{K1}\) has at least \(2n_{u}+2\) columns. Also, by virtue of our choice of \(\mathsf {K}_{b1}\), we have

$$\begin{aligned} \mathfrak {I}(\mathsf {K}_{b1}^* \mathsf {K}_{b1})= & {} \mathfrak {I}\{W_2\}\\= & {} \nicefrac {1}{2}(Z-Z^{\top })-\nicefrac {1}{4}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{cc} 0 &{} I \\ -I &{} 0 \end{array} \right] P_{n_u}C_K-\mathfrak {I}\{\mathsf {K}_{b2}^* \mathsf {K}_{b2}\}, \end{aligned}$$

and hence

$$\begin{aligned} \mathfrak {I}(\mathsf {K}^*\mathsf {K})= & {} \mathfrak {I}(\mathsf {K}_{b1}^* \mathsf {K}_{b1}) + \mathfrak {I}(\mathsf {K}_{b2}^* \mathsf {K}_{b2})+\nicefrac {1}{4}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{cc} 0 &{} I \\ -I &{} 0 \end{array} \right] P_{n_u} C_K\\= & {} \nicefrac {1}{2}(Z-Z^{\top }). \end{aligned}$$

Since \(R=\frac{Z+Z^{\top }}{2}\), we have \(R+\mathfrak {I}(\mathsf {K}^* \mathsf {K})=Z\). Therefore, (5.90) is satisfied.

Now, we observe that \( \imath \mathbb {J}_{n_K} B_K\mathrm{diag}_{n_y}(M^*)P_{n_y}^{\top }=[\begin{array}{cc} T&-T^\# \end{array}] \ \) for some \(2n_K \times n_y\) complex matrix T. But by taking the conjugate transpose of both sides of (5.75) which defined \(\mathsf {K}_{b2}\), we conclude that \(T=-\mathsf {K}_{b2}^*\). Hence,

$$\begin{aligned} B_K=2\imath \mathbb {J}_{n_K} [\begin{array}{cc} -\mathsf {K}_{b2}^*&\mathsf {K}_{b2}^{\top }\end{array} ]P_{n_y}\mathrm{diag}_{n_y}(M). \end{aligned}$$
(5.95)

From (5.74) which defined \(B_{K1,1}\), we obtain

$$\begin{aligned} B_{K1,1}= & {} \mathbb {J}_{n_K} C_K ^{\top }\mathrm{diag}_{n_u}(\mathbb {J}) \nonumber \\= & {} \mathbb {J}_{n_K} C_K ^{\top }\mathrm{diag}_{n_u}(\mathbb {J})(2\mathrm{diag}_{n_u}(M^*))\mathrm{diag}_{n_u}(M) \nonumber \\= & {} \imath \mathbb {J}_{n_K} C_K ^{\top }\mathrm{diag}_{n_u}\left( \left[ \begin{array}{cc} -1 &{} 1 \\ \imath &{} \imath \end{array} \right] \right) \mathrm{diag}_{n_u}(M) \nonumber \\= & {} \imath \mathbb {J}_{n_K} C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{cc}-I &{} I \\ \imath I &{} \imath I\end{array} \right] P_{n_u}\mathrm{diag}_{n_u}(M). \end{aligned}$$
(5.96)

Combining (5.76), (5.95) and (5.96) gives us

$$\begin{aligned}&[\begin{array}{ccc}B_{K1,1}&B_{K1,2}&B_{K}\end{array}] \\&\quad =2\imath \mathbb {J}_{n_K} \left[ \nicefrac {1}{2}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{cc} -I &{} I \\ \imath I &{} \imath I \end{array} \right] P_{n_u} \left[ \begin{array}{cc}-\mathsf {K}_{b1}^*&\mathsf {K}_{b1}^{\top }\end{array} \right] P_{n_{v_K}-n_u} \right. \\&\quad \quad \left. \begin{array}{cc}&\left[ \begin{array}{cc} -\mathsf {K}_{b2}^*&\mathsf {K}_{b2}^{\top }\end{array} \right] P_{n_y} \end{array}\right] P_{n_{w_K}}^{\top }P_{n_{w_K}}\mathrm{diag}_{n_{w_K}}(M)\\&\quad =2\imath \mathbb {J}_{n_K} \left[ \begin{array}{ccc} -\nicefrac {1}{2}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{c} I \\ -\imath I \end{array} \right]&-\mathsf {K}_{b1}^*&-\mathsf {K}_{b2}^* \end{array}\right. \\&\quad \left. \begin{array}{ccc}\nicefrac {1}{2}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{c} I \\ \imath I \end{array} \right]&\mathsf {K}_{b1}^{\top }&\mathsf {K}_{b2}^{\top }\end{array} \right] P_{n_{w_K}} \mathrm{diag}_{n_{w_K}}(M) \\&\quad =2\imath \mathbb {J}_{n_K} \left[ \begin{array}{ccc} -\nicefrac {1}{2}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{c} I \\ -\imath I \end{array} \right]&-\mathsf {K}_{b1}^*&-\mathsf {K}_{b2}^* \end{array} \right. \\&\quad \left. \begin{array}{ccc}\nicefrac {1}{2}C_K^{\top }P_{n_u}^{\top }\left[ \begin{array}{c} I \\ \imath I \end{array} \right]&\mathsf {K}_{b1}^{\top }&\mathsf {K}_{b2}^{\top }\end{array} \right] \Gamma \\&\quad =2\imath \mathbb {J}_{n_K} \left[ \begin{array}{cc} -\mathsf {K}^*&\mathsf {K}^{\top }\end{array} \right] \Gamma . \end{aligned}$$

Therefore, (5.91) is also satisfied. Moreover, it is straightforward to verify (5.92) by substituting \(\mathsf {K}\) as defined by (5.94) into the right-hand side of (5.92). Finally, since \(n_{v_K} \ge n_u\), it follows that \([\begin{array}{cc} B_{K0}&0_{2n_u \times 2(n_{v_K}+n_y-n_u)} \end{array}]\) is precisely the right-hand side of (5.93). This completes the proof of Theorem 5.4. \(\Box \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nurdin, H.I., Yamamoto, N. (2017). Feedback Control of Linear Dynamical Quantum Systems. In: Linear Dynamical Quantum Systems. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55201-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55201-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55199-9

  • Online ISBN: 978-3-319-55201-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics