Advertisement

Quantum Filtering for Linear Dynamical Quantum Systems

  • Hendra I. NurdinEmail author
  • Naoki Yamamoto
Chapter
  • 730 Downloads
Part of the Communications and Control Engineering book series (CCE)

Abstract

This chapter introduces quantum filtering theory as a quantum analogue of stochastic filtering theory. When applied to linear quantum systems, this leads to a quantum version of the Kalman filter. Concepts from quantum probability theory that are relevant to quantum filtering theory are introduced, including a suitable notion of quantum conditional expectations. The chapter also briefly introduces robust observers for linear quantum systems to deal with modeling uncertainties for the purpose of estimation.

Keywords

Kalman Filter Conditional State Quantum Version Robust Observer Classical Probability Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Bouten, R. van Handel, M.R. James, An introduction to quantum filtering. SIAM J. Control Optim. 46, 2199–2241 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    N. Yamamoto, L. Bouten, Quantum risk-sensitive filtering and robustness. IEEE Trans. Autom. Control 54(1), 92–107. Reprinted, with permission, \(\copyright \) 2009 IEEE (2009)Google Scholar
  3. 3.
    S. Sakai, C*-Algebras and W*-Algebras (Springer, Berlin, 1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    L. Bouten, R. van Handel, Quantum filtering: a reference probability approach (2006). arXiv preprint, http://arXiv.org/abs/math-ph/0508006
  5. 5.
    L. Bouten, R. van Handel, On the separation principle of quantum control, in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), ed. by V.P. Belavkin, M. Guta (World Scientific, Singapore, 2008), pp. 206–238CrossRefGoogle Scholar
  6. 6.
    R. van Handel, J.K. Stockton, H. Mabuchi, Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50(6), 768–780 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H.I. Nurdin, Quantum filtering for multiple input multiple output systems driven by arbitrary zero-mean jointly Gaussian input fields. Russ. J. Math. Phys. 21(3), 386–398 (2014). Reprinted, with permission, \(\copyright \) (2006) by the American Physical SocietyGoogle Scholar
  8. 8.
    N. Yamamoto, Robust observer for uncertain linear quantum systems. Phys. Rev. A 74, 032107. Reprinted, with permission, Copyright (2006) by the American Physical Society (2006)Google Scholar
  9. 9.
    J. Gough, M.R. James, The series product and its application to quantum feedforward and feedback networks. IEEE Trans. Autom. Control 54(11), 2530–2544 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.R. James, H.I. Nurdin, I.R. Petersen, \(H^{\infty }\) control of linear quantum stochastic systems. IEEE Trans. Autom. Control 53(8), 1787–1803 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Quantum optical realization of classical linear stochastic systems. Automatica 49(10), 3090–3096 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Network Synthesis for a Class of Mixed Quantum-Classical Linear Stochastic Systems. arXiv:1403.6928 (2014, arXiv preprint)
  13. 13.
    S. Wang, H.I. Nurdin, G. Zhang, M.R. James, Synthesis and structure of mixed quantum-classical linear systems, in Proceedings of the 51st IEEE Conference on Decision and Control (Maui, Hawaii, Dec 10–13, 2012) (2012), pp. 1093–1098Google Scholar
  14. 14.
    I.R. Petersen, V. Ugrinovskii, M.R. James, Robust stability of uncertain linear quantum systems. Philos. Trans. R. Soc. A 370, 5354–5363 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P. Dupuis, M. James, I. Petersen, Robust properties of risk-sensitive control. Math. Control Syst. Signals 13, 318–332 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    R.K. Boel, M.R. James, I.R. Petersen, Robustness and risk sensitive filtering. IEEE Trans. Autom. Control 47(3), 451–461 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M.R. James, A quantum Langevin formulation of risk-sensitive optimal control. J. Opt. B: Quantum Semiclass. Opt. 7, 198 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    C. D’Helon, A.C. Doherty, M.R. James, S.D. Wilson, Quantum risk-sensitive control, in Proceedings of the 45th IEEE Conference on Decision and Control (CDC) (2006), pp. 3132 – 3137Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsUNSW AustraliaSydneyAustralia
  2. 2.Department of Applied Physics and Physico-InformaticsKeio UniversityYokohamaJapan

Personalised recommendations