• Hendra I. NurdinEmail author
  • Naoki Yamamoto
Part of the Communications and Control Engineering book series (CCE)


This chapter gives a brief overview of and introduction to quantum feedback control and linear quantum systems. It begins with a brief history of quantum feedback control, in particular the development of quantum analogues of ideas from stochastic control theory, and discusses the notion of closed and open quantum systems, the Markov property, and quantum Langevin equations. This chapter then proceeds with an introduction to linear quantum systems and several physical examples thereof, including optical cavities, non-degenerate and degenerate parametric amplifiers, and large atomic ensembles.


Quantum System Optical Cavity Open Quantum System Quantum Memory Atomic Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V.P. Belavkin, S.C. Edwards, Quantum filtering and optimal control, in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), ed. by V.P. Belavkin, M. Guta (World Scientific, Singapore, 2008), pp. 143–205CrossRefGoogle Scholar
  2. 2.
    M.R. James, H.I. Nurdin, I.R. Petersen, \(H^{\infty }\) control of linear quantum stochastic systems. IEEE Trans. Autom. Control 53(8), 1787–1803 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    H.I. Nurdin, M.R. James, A.C. Doherty, Network synthesis of linear dynamical quantum stochastic systems. SIAM J. Control Optim. 48(4), 2686–2718 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J.E. Gough, M.R. James, H.I. Nurdin, Squeezing components in linear quantum feedback networks. Phys. Rev. A 81, 023804 (2010)CrossRefGoogle Scholar
  5. 5.
    C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd edn. (Springer, Berlin, 2004)zbMATHGoogle Scholar
  6. 6.
    A. Furusawa, P. van Loock, Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Wiley-VCH, Berlin, 2011)CrossRefGoogle Scholar
  7. 7.
    R. Hamerly, H. Mabuchi, Advantages of coherent feedback for cooling quantum oscillators. Phys. Rev. Lett. 109, 173602 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Kerckhoff, R.W. Andrews, H.S. Ku, W.F. Kindel, K. Cicak, R.W. Simmonds, K.W. Lehnert, Tunable coupling to a mechanical oscillator circuit using a coherent feedback network. Phys. Rev. X 3, 021013 (2013)Google Scholar
  9. 9.
    M. Hush, A.R.R. Carvalho, M. Hedges, M.R. James, Analysis of the operation of gradient echo memories using a quantum input-output model. New J. Phys. 15, 085020 (2013)CrossRefGoogle Scholar
  10. 10.
    A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. Manucharyan, L. Frunzio, D.E. Prober, R.J. Schoelkopf, S.M. Girvin, M.H. Devoret, Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010)CrossRefGoogle Scholar
  12. 12.
    Q.Y. He, M.D. Reid, E. Giacobino, J. Cviklinski, P.D. Drummond, Dynamical oscillator-cavity model for quantum memories. Phys. Rev. A 79, 022310 (2009)CrossRefGoogle Scholar
  13. 13.
    I. Novikov, A.V. Gorshkov, D.F. Phillips, A.S. Sorensen, M.D. Lukin, R.L. Walsworth, Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007)CrossRefGoogle Scholar
  14. 14.
    A.V. Gorshkov, A. Andre, M.D. Lukin, A.S. Sorensen, Photon storage in lambda-type optically dense atomic media I. Cavity model. Phys. Rev. A 76, 033804 (2007)CrossRefGoogle Scholar
  15. 15.
    W.L. Brogan, Modern Control Theory, 3rd edn. (Prentice-Hall, Upper Saddle River, 1991)zbMATHGoogle Scholar
  16. 16.
    K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, Upper Saddle River, 1995)Google Scholar
  17. 17.
    J.K. Stockton, J. Geremia, A.C. Doherty, H. Mabuchi, Robust quantum parameter estimation: coherent magnetometry with feedback. Phys. Rev. A 69, 032109 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Guta, N. Yamamoto, System identification for passive linear quantum systems. IEEE Trans. Autom. Control 61(4), 921–936 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    V.B. Braginsky, F.Y. Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmermann, On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980)CrossRefGoogle Scholar
  21. 21.
    M. Tsang, C.M. Caves, Coherent quantum-noise cancellation for optomechanical sensors. Phys. Rev. Lett. 105, 123601 (2010)CrossRefGoogle Scholar
  22. 22.
    H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices (Springer, Berlin, 2012)CrossRefGoogle Scholar
  23. 23.
    Y. Chen, Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. J. Phys. B: At. Mol. Opt. Phys. 46, 104001 (2013)CrossRefGoogle Scholar
  24. 24.
    H.I. Nurdin, M.R. James, I.R. Petersen, Coherent quantum LQG control. Automatica 45, 1837–1846 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    N. Yamamoto, Coherent versus measurement feedback: linear systems theory for quantum information. Phys. Rev. X 4, 041029 (2014)Google Scholar
  26. 26.
    Y. Yokotera, N. Yamamoto, Geometric control theory for quantum back-action evasion. EPJ Quantum Technol. 3(15), 1–22 (2016)Google Scholar
  27. 27.
    H.I. Nurdin, J.E. Gough, Modular quantum memories using passive linear optics and coherent feedback. Quantum Inf. Comput. 15(11–12), 1017–1040 (2015)MathSciNetGoogle Scholar
  28. 28.
    G.J. Milburn, Coherent control of single photon states. Eur. Phys. J. 159, 113–117 (2008)Google Scholar
  29. 29.
    G. Zhang, M.R. James, On the response of quantum linear systems to single photon input fields. IEEE Trans. Autom. Control 58(5), 1221–1235 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Zhang, Analysis of quantum linear systems’ response to multi-photon states. Automatica 50(2), 442–451 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    K. Koga, N. Yamamoto, Dissipation-induced pure Gaussian state. Phys. Rev. A 85, 022103 (2012)CrossRefGoogle Scholar
  32. 32.
    N. Yamamoto, Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach. Philos. Trans. R. Soc. A 370, 5324–5337 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    N.C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T.C. Ralph, M.A. Nielsen, Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)CrossRefGoogle Scholar
  34. 34.
    A.C. Doherty, K. Jacobs, Feedback-control of quantum systems using continuous state-estimation. Phys. Rev. A 60, 2700 (1999)CrossRefGoogle Scholar
  35. 35.
    N. Yamamoto, H.I. Nurdin, M.R. James, I.R. Petersen, Avoiding entanglement sudden-death via feedback control in a quantum network. Phys. Rev. A 78, 042339 (2008)CrossRefGoogle Scholar
  36. 36.
    H.I. Nurdin, N. Yamamoto, Distributed entanglement generation between continuous-mode Gaussian fields with measurement-feedback enhancement. Phys. Rev. A 86, 022337 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Yoshikawa, K. Makino, S. Kurata, P. van Loock, A. Furusawa, Creation, storage, and on-demand release of optical quantum states with a negative Wigner function. Phys. Rev. X 3, 041028 (2013)Google Scholar
  38. 38.
    N. Yamamoto, M.R. James, Zero dynamics principle for perfect quantum memory in linear networks. New J. Phys. 16, 073032 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    H. Mabuchi, Coherent-feedback quantum control with a dynamic compensator. Phys. Rev. A 78, 032323 (2008)CrossRefGoogle Scholar
  40. 40.
    M. Sarovar, D.B.S. Soh, J. Cox, C. Brif, C.T. DeRose, R. Camacho, P. Davids, Silicon nanophotonics for scalable quantum coherent feedback networks. EPJ Quantum Technol. 3(14), 1–18 (2016)Google Scholar
  41. 41.
    M. Yanagisawa, H. Kimura, Transfer function approach to quantum control-part i: dynamics of quantum feedback systems. IEEE Trans. Autom. Control 48(12), 2107–2120 (2003)CrossRefGoogle Scholar
  42. 42.
    M. Yanagisawa, H. Kimura, Transfer function approach to quantum control - part ii: control concepts and applications. IEEE Trans. Autom. Control 48(12), 2121–2132 (2003)CrossRefGoogle Scholar
  43. 43.
    J.E. Gough, S. Wildfeuer, Enhancement of field squeezing using coherent feedback. Phys. Rev. A 80, 042107 (2009)CrossRefGoogle Scholar
  44. 44.
    S. Iida, M. Yukawa, H. Yonezawa, N. Yamamoto, A. Furusawa, Experimental demonstration of coherent feedback control on optical field squeezing. IEEE Trans. Autom. Control 57(8), 2045–2050. Reprinted, with permission, \(\copyright \) 2012 IEEE (2012)Google Scholar
  45. 45.
    O. Crisafulli, N. Tezak, D.B.S. Soh, M.A. Armen, H. Mabuchi, Squeezed light in an optical parametric amplifier oscillator network with coherent feedback quantum control. Opt. Express 21, 18371–18386 (2013)Google Scholar
  46. 46.
    R.G. Beausoleil, P.J. Keukes, G.S. Snider, S.-Y. Wang, R.S. Williams, Nanoelectronic and nanophotonic interconnect. Proc. IEEE 96, 230–247 (2007)CrossRefGoogle Scholar
  47. 47.
    H. Mabuchi, Nonlinear interferometry approach to photonic sequential logic. Appl. Phys. Lett. 99, 153103 (2011)CrossRefGoogle Scholar
  48. 48.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2010)Google Scholar
  49. 49.
    T.J. Tarn, G. Huang, J.W. Clark, Modelling of quantum mechanical control systems. Math. Model. 1(1), 109–121 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    G.M. Huang, T.J. Tarn, J.W. Clark, On the controllability of quantum-mechanical systems. J. Math. Phys. 24(11), 2608–2618 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    D. D’Alessandro, Introduction to Quantum Dynamics and Control. Applied Mathematics and Nonlinear Science Series (Chapman & Hall/CRC, London, 2008)Google Scholar
  52. 52.
    E. Davies, Quantum Theory of Open Systems (Academic Press, New York, 1976)zbMATHGoogle Scholar
  53. 53.
    V.P. Belavkin, Optimal measurement and control in quantum dynamical systems. Institute of Physics, Nicolaus Copernicus University, Torun, preprint 411 (1979)Google Scholar
  54. 54.
    V. Belavkin, On the theory of controlling observable quantum systems. Autom. Remote Control 44(2), 178–188 (1983)zbMATHGoogle Scholar
  55. 55.
    V.P. Belavkin, Nondemolition measurements, nonlinear filtering, and dynamic programming of quantum stochastic processes, in Modelling and Control of Systems in Engineering, Quantum Mechanics, Economics, and Biosciences, ed. by A. Blaquiere (Springer, New York, 1988), pp. 245–265Google Scholar
  56. 56.
    V.P. Belavkin, Continuous non-demolition observation, quantum filtering and optimal estimation, Quantum Aspects of Optical Communication, vol. 45, Lecture Notes in Physics (Springer, Berlin, 1991), pp. 151–163Google Scholar
  57. 57.
    M.J. Collett, C.W. Gardiner, Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30(3), 1386–1391 (1984)CrossRefGoogle Scholar
  58. 58.
    C. Gardiner, M. Collett, Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985)MathSciNetCrossRefGoogle Scholar
  59. 59.
    R.L. Hudson, K.R. Parthasarathy, Quantum Ito’s formula and stochastic evolution. Commun. Math. Phys. 93, 301–323 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    L. Bouten, R. van Handel, M.R. James, An introduction to quantum filtering. SIAM J. Control Optim. 46, 2199–2241 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    J. Dalibard, Y. Castin, K. Mölmer, Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)CrossRefGoogle Scholar
  62. 62.
    R. Dum, P. Zoller, H. Ritsch, Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A 45(7), 4879–4887 (1992)CrossRefGoogle Scholar
  63. 63.
    H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993)zbMATHGoogle Scholar
  64. 64.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  65. 65.
    J.P. Dowling, G.J. Milburn, Quantum technology: the second quantum revolution. Philos. Trans. R. Soc. Lond. A 361, 1655–1674 (2003)MathSciNetCrossRefGoogle Scholar
  66. 66.
    L. Bouten, Filtering and control in quantum optics. Ph.D. dissertation, Catholic University of Nijmegen (2004)Google Scholar
  67. 67.
    L. Bouten, R. van Handel, Quantum filtering: a reference probability approach (2006). arXiv:math-ph/0508006 (arXiv preprint)
  68. 68.
    L. Bouten, R. van Handel, On the separation principle of quantum control, in Quantum Stochastics and Information: Statistics, Filtering and Control (University of Nottingham, UK, 15–22 July 2006), ed. by V.P. Belavkin, M. Guta (World Scientific, Singapore, 2008), pp. 206–238CrossRefGoogle Scholar
  69. 69.
    H. Mabuchi, N. Khaneja, Principles and applications of control in quantum systems. Int. J. Robust Nonlinear Control 15(15), 647–667 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    K.J. Astrom, R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers (Princeton University Press, Princeton, 2008)Google Scholar
  71. 71.
    B.D.O. Anderson, J.B. Moore, Optimal Control: Linear Quadratic Methods (Prentice-Hall, Englewood Cliffs, 1990)zbMATHGoogle Scholar
  72. 72.
    O.L.R. Jacobs, Introduction to Control Theory (Oxford University Press, Oxford, 1993)zbMATHGoogle Scholar
  73. 73.
    P. Whittle, Optimal Control (Wiley, Chichester, 1996)zbMATHGoogle Scholar
  74. 74.
    D.J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, T.J. Kippenberg, Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015)CrossRefGoogle Scholar
  75. 75.
    S. Pirandola, A. Serafini, S. Lloyd, Correlation matrices of two-mode bosonic systems. Phys. Rev. A 79, 052327 (2009)CrossRefGoogle Scholar
  76. 76.
    J. Laurat, G. Keller, J.A. Oliveira-Huguenin, C. Fabre, T. Coudreau, A. Serafini, G. Adesso, F. Illuminati, Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation. J. Opt. B: Quantum Semiclass. Opt. 7, S577–S587 (2005)CrossRefGoogle Scholar
  77. 77.
    L. Accardi, J. Gough, Y.G. Lu, On the stochastic limit for quantum theory. Rep. Math. Phys. 36(2), 155–187 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    L. Accardi, Y.G. Lu, I. Volovich, Quantum Theory and Its Stochastic Limit. Series, Physics and Astronomy (Springer, Berlin, 2002)Google Scholar
  79. 79.
    H. Bachor, T. Ralph, A Guide to Experiments in Quantum Optics, 2nd edn. (Wiley-VCH, Weinheim, 2004)CrossRefGoogle Scholar
  80. 80.
    Z.Y. Ou, S.F. Pereira, H.J. Kimble, Realization of the Einstein–Podolski–Rosen paradox for continuous variables in nondegenerate parametric amplification. Appl. Phys. B 55, 265–278 (1992)CrossRefGoogle Scholar
  81. 81.
    D. Vitali, G. Morigi, J. Eschner, Single cold atom as efficient source of EPR-entangled light. Phys. Rev. A 74, 053814 (2006)CrossRefGoogle Scholar
  82. 82.
    S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    C.K. Law, Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys. Rev. A 51, 2537–2541 (1995)CrossRefGoogle Scholar
  84. 84.
    G.J. Milburn, M.J. Woolley, An introduction to quantum optomechanics. Acta Physica Slovaca 61, 483–601 (2011)Google Scholar
  85. 85.
    L.K. Thomsen, S. Mancini, H.M. Wiseman, Continuous quantum nondemolition feedback and unconditional atomic spin squeezing. J. Phys. B: At. Mol. Opt. Phys. 35, 4937–4952 (2002)CrossRefGoogle Scholar
  86. 86.
    R. Inoue, S. Tanaka, R. Namiki, T. Sagawa, Y. Takahashi, Unconditional quantum-noise supression via measurement-based quantum feedback. Phys. Rev. Lett. 110, 163602 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsUNSW AustraliaSydneyAustralia
  2. 2.Department of Applied Physics and Physico-InformaticsKeio UniversityYokohamaJapan

Personalised recommendations