Skip to main content

Self-Sustained Traversable Wormholes

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 189))

Abstract

In this contribution, we consider self-sustained traversable wormholes, which are configurations sustained by their own gravitational quantum fluctuations. The investigation is evaluated through a variational approach with Gaussian trial wave functionals to one loop, and the graviton quantum fluctuations are interpreted as a kind of exotic energy. Since these fluctuations usually produce ultraviolet (UV) divergences, we introduce two procedures to keep them under control. The first consists of a zeta function regularization and a renormalization process that is introduced to obtain a finite one loop energy. The second approach considers the case of distorted gravity, namely, when either Gravity’s Rainbow or a noncommutative geometry is used as a tool to keep under control the UV divergences. It is shown that for every framework, the self-sustained equation will produce a Wheeler wormhole of Planckian size. Some consequences on topology change are discussed together with the possibility of obtaining an enlarged wormhole radius.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See for example Refs. [6, 7] to see how the Casimir procedure comes into play for ZPE calculations.

  2. 2.

    See also Refs. [10,11,12,13], where the authors search for classical traversable wormholes supported by phantom energy.

  3. 3.

    To this purpose, see also paper of Hochberg, Popov, and Sushkov [14], and the paper of Khusnutdinov and Sushkov [15].

  4. 4.

    Note that our approach is very close to the gravitational geon considered by Anderson and Brill [18]. The relevant difference is in the averaging procedure.

  5. 5.

    Details on sign conventions and decomposition of the Einstein tensor can be found in Sect. 6.2.1.

  6. 6.

    See also Refs. [22, 23] for further details on the decomposition of the perturbation at the quantum level.

  7. 7.

    Note that sometimes the effective masses are related to the three-dimensional Lichnerowicz operator defined in [24], whose form is

    figure a
  8. 8.

    It is interesting to note that the inhomogeneous case, namely \(p_{r}=\omega \left( r\right) \rho ^{\gamma }\) potentially can produce results [31].

  9. 9.

    Of course, one could also consider a generalized uncertainty principle (GUP) to obtain finite results. However, it is easy to see that if one postulates the validity of Gravity’s Rainbow, to obtain modified dispersion relations one necessarily has to impose

    figure b

    namely plane wave solutions which remain plane, even if the metric is described by Eq. (6.100); only in this way can one argue that the modified dispersion relations are a consequence of gravity’s rainbow. However, if we relax the condition of imposing plane wave solutions even at the Planck scale, the distorted metric, Eq. (6.100), leads to a GUP which differs from the Heisenberg uncertainty principle, by terms linear and quadratic in particle momenta. The GUP-induced terms become relevant near the Planck scale and lead to the existence of a minimum measurable length. This could be interpreted as the breakdown of the validity of continuum space–time at very small scales.

References

  1. Morris MS, Thorne KS. Wormholes in spacetime and their use for interstellar travel: a tool for teaching General Relativity. Am J Phys. 1988;56:395.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Morris MS, Thorne KS, Yurtsever U. Wormholes, time machines, and the weak energy condition. Phys Rev Lett. 1988;61:1446.

    Article  ADS  Google Scholar 

  3. Visser M. Lorentzian wormholes. New York: AIP Press; 1995.

    Google Scholar 

  4. Garattini R. Self sustained traversable wormholes and the equation of state. Class Quantum Gravity. 2007;24:1189.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Garattini R. Self sustained traversable wormholes? Class Quantum Gravity. 2005;22:1105.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Garattini R. Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime. Class Quantum Gravity. 2001;18:571.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Garattini R. Casimir energy and variational methods in AdS spacetime. Class Quantum Gravity. 2000;17:3335.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ellis H. Ether flow through a drainhole – a particle model in general relativity. J Math Phys. 1973;14:104.

    Article  ADS  MathSciNet  Google Scholar 

  9. Bronnikov KA. Scalar-tensor theory and scalar charge. Acta Phys Pol B. 1973;4:251.

    MathSciNet  Google Scholar 

  10. Lobo FSN. Phantom energy traversable wormholes. Phys Rev D. 2005;71:084011.

    Article  ADS  MathSciNet  Google Scholar 

  11. Lobo FSN. Stability of phantom wormholes. Phys Rev D. 2005;71:124022.

    Article  ADS  Google Scholar 

  12. Kuhfittig PKF. Seeking exactly solvable models of traversable wormholes supported by phantom energy. Class Quantum Gravity. 2006;23:5853.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Sushkov S. Wormholes supported by a phantom energy. Phys Rev D. 2005;71:043520.

    Article  ADS  Google Scholar 

  14. Hochberg D, Popov A, Sushkov SV. Self-consistent wormhole solutions of semiclassical gravity. Phys Rev Lett. 1997;78:2050.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Khusnutdinov NR, Sushkov SV. Ground state energy in a wormhole space-time. Phys Rev D. 2002;65:084028.

    Article  ADS  MathSciNet  Google Scholar 

  16. Fewster CJ, Olum KD, Pfenning MJ. Averaged null energy condition in spacetimes with boundaries. Phys Rev D. 2007;75:025007.

    Article  ADS  Google Scholar 

  17. Hawking SW, Ellis GFR. The large scale structure of spacetime. Cambridge: Cambridge University Press; 1973.

    Book  MATH  Google Scholar 

  18. Anderson PR, Brill DR. Gravitational geons revisited. Phys Rev D. 1997;56:4824.

    Article  ADS  MathSciNet  Google Scholar 

  19. Berger M, Ebin D. Some decompositions of the space of symmetric tensors on a Riemannian manifold. J Differ Geom. 1969;3:379.

    Article  MathSciNet  MATH  Google Scholar 

  20. York JW Jr. Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initialvalue problem of general relativity. J Math Phys. 1973;14:4.

    Article  Google Scholar 

  21. York JW Jr. Covariant decompositions of symmetric tensors in the theory of gravitation. Ann Inst Henri Poincaré A. 1974;21:319.

    ADS  MathSciNet  MATH  Google Scholar 

  22. Garattini R. The Cosmological constant and the Wheeler-DeWitt Equation. PoS CLAQG08, vol. 012. 2011.

    Google Scholar 

  23. Garattini R. Wormholes or Gravastars? JHEP. 2013;1309:052.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Garattini R, Mandanici G. Modified dispersion relations lead to a finite zero point gravitational energy. Phys Rev D. 2011;83:084021.

    Article  ADS  Google Scholar 

  25. Garattini R, Lobo FSN. Self sustained phantom wormholes in semi-classical gravity. Class Quantum Gravity. 2007;24:2401.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. González-Díaz PF. Wormholes and ringholes in a dark-energy universe. Phys Rev D. 2003;68:084016.

    Article  ADS  Google Scholar 

  27. González-Díaz PF. Achronal cosmic future. Phys Rev Lett. 2004;93:071301.

    Article  ADS  Google Scholar 

  28. González-Díaz PF, Jimenez-Madrid JA. Phantom inflation and the ‘Big Trip’. Phys Lett B. 2004;596:16.

    Article  ADS  Google Scholar 

  29. González-Díaz PF. On the accretion of phantom energy onto wormholes. Phys Lett B. 2006;632:159.

    Article  ADS  Google Scholar 

  30. González-Díaz PF. Some notes on the Big Trip. Phys Lett B. 2006;635:1.

    Article  ADS  Google Scholar 

  31. In preparation.

    Google Scholar 

  32. Nicolini P, Smailagic A, Spallucci E. Noncommutative geometry inspired Schwarzschild black hole. Phys Lett B. 2006;632:547.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Garattini R, Lobo FSN. Self-sustained traversable wormholes in noncommutative geometry. Phys Lett B. 2009;671:146.

    Article  ADS  MathSciNet  Google Scholar 

  34. Magueijo J, Smolin L. Class Quantum Gravity. 2004;21:1725.

    Article  ADS  Google Scholar 

  35. Garattini R, Lobo FSN. Self-sustained wormholes in modified dispersion relations. Phys Rev D. 2012;85:024043.

    Article  ADS  Google Scholar 

  36. Garattini R, Nicolini P. A noncommutative approach to the cosmological constant problem. Phys Rev D. 2011;83:064021.

    Article  ADS  Google Scholar 

  37. Garattini R, Lobo FSN. Gravity’s Rainbow induces topology change. Eur Phys J C. 2014;74:2884.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remo Garattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Garattini, R., Lobo, F.S.N. (2017). Self-Sustained Traversable Wormholes. In: Lobo, F. (eds) Wormholes, Warp Drives and Energy Conditions. Fundamental Theories of Physics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-55182-1_6

Download citation

Publish with us

Policies and ethics