Skip to main content

Exploratory Marker Data Analysis

  • Chapter
  • First Online:
  • 4637 Accesses

Abstract

Genetic data sets available to breeders are increasing in size, both in numbers of markers and in numbers of breeding individuals or lines genotyped. The scale of the data sets requires breeders to use software to perform quality control checks, visualize, and manipulate data. Breeders will often want to combine genetic marker data with physical or linkage map information, phenotypic data, and pedigree information. In this chapter we demonstrate the use of base R and the synbreed package of R to process an example data set from a maritime pine breeding population. The synbreed package defines the gpData object class, which can hold phenotypes, genotypes, pedigree, and genetic map information. This package is particularly useful to streamline data manipulation and analyses that combine genotype and phenotype data. Readers should be aware that algorithm and software developments for genomic data are areas of active research, more efficient and powerful methods are constantly being developed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literature Cited

  • Ripke, S., Isaacs, A., & van Duijn, C. M. (2007). GenABEL: An R library for genome-wide association analysis. Bioinformatics, 23, 1294–1296. doi:10.1093/bioinformatics/btm108.

    Article  PubMed  Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chancerel, E., Lamy, J.-B., Lesur, I., Noirot, C., Klopp, C., Ehrenmann, F., Boury, C., Le Provost, G., Label, P., & Lalanne, C. (2013). High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biology, 11, 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland, M., Hickey, J., & Forni, S. (2012). A common dataset for genomic analysis of livestock populations. G3 (Bethesda), 2, 429–435. doi:10.1534/g3.111.001453.

    Article  Google Scholar 

  • Forni, S., Aguilar, I., & Misztal, I. (2011). Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution, 43, 1.

    Article  Google Scholar 

  • Grattapaglia, D., Ribeiro, V. J., & Rezende, G. D. S. P. (2004). Retrospective selection of elite parent trees using paternity testing with microsatellite markers: An alternative short term breeding tactic for Eucalyptus. Theoretical and Applied Genetics, 109, 192–199. doi:10.1007/s00122-004-1617-9.

    Article  CAS  PubMed  Google Scholar 

  • Habier, D., Fernando, R. L., Kizilkaya, K., & Garrick, D. J. (2011). Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 12, 186. doi:10.1186/1471-2105-12-186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92, 433–443. doi:10.3168/jds.2008-1646.

    Article  CAS  PubMed  Google Scholar 

  • Isik, F., Isik, K., Lee, S. (1999). Genetic variation in Pinus brutia ten. In Turkey: I. Growth, biomass and stem quality trats. International Journal of Forest Genetics, 6, 89–99.

    Google Scholar 

  • Lewontin, R. C. (1964). The interaction of selection and linkage. I. General considerations; heterotic models. Genetics, 49, 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., & Cierco-Ayrolles, C. (2012). Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity, 108, 285–291. doi:10.1038/hdy.2011.73.

    Article  CAS  PubMed  Google Scholar 

  • Pérez, P., de los Campos, G., Crossa, J., & Gianola, D. (2010). Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. The Plant Genome Journal, 3, 106. doi:10.3835/plantgenome2010.04.0005.

    Article  Google Scholar 

  • Plomion, C., Chancerel, E., Endelman, J., Lamy, J.-B., Mandrou, E., Lesur, I., Ehrenmann, F., Isik, F., Bink, M. C., Bouffier, L., et al. (2014). Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genomics, 15, 171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reich, D. E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P. C., Richter, D. J., Lavery, T., Kouyoumjian, R., Farhadian, S. F., Ward, R., & Lander, E. S. (2001). Linkage disequilibrium in the human genome. Nature, 411, 199–204. doi:10.1038/35075590.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J.-H., Blay, S., McNeney, B., & Graham, J. (2006). LDheatmap: An R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. Journal of Statistical Software, 16, 1–10.

    Article  Google Scholar 

  • Welham, S. J., Gogel, B. J., Smith, A. B., Thompson, R., & Cullis, B. R. (2010). A comparison of analysis methods for late-stage variety evaluation trials. Australian & New Zealand Journal of Statistics, 52, 125–149. doi:10.1111/j.1467-842X.2010.00570.x.

    Article  Google Scholar 

  • Wright, S. (1922). Coefficients of inbreeding and relationship. The American Naturalist, 56, 330–338.

    Article  Google Scholar 

  • Yamada, Y. (1962). Genotype by environment interaction and genetic correlation of the same trait under different environments. The Japanese Journal of Genetics, 37, 498–509. doi:10.1266/jjg.37.498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isik, F., Holland, J., Maltecca, C. (2017). Exploratory Marker Data Analysis. In: Genetic Data Analysis for Plant and Animal Breeding. Springer, Cham. https://doi.org/10.1007/978-3-319-55177-7_9

Download citation

Publish with us

Policies and ethics