Skip to main content

The Blade Element Momentum (BEM) Method

  • Chapter
  • First Online:

Part of the book series: Research Topics in Wind Energy ((RTWE,volume 7))

Abstract

The current chapter presents the blade element momentum (BEM) method. The BEM method for a steady uniform inflow is presented in a first section. Some of the ad-hoc corrections that are usually added to the algorithm are discussed in a second section. An exception is made to the tip-loss correction which is introduced early in the algorithm formulation for practical reasons. The ad-hoc corrections presented are: the tip-loss correction, the high-thrust correction (momentum breakdown) and the correction for wake rotation. The formulation of an unsteady BEM code is given in a third section. The dynamic effects discussed are the dynamic wake/inflow model, the yaw and tilt model, the dynamic stall model, and models for the interference of the tower and nacelle. Some examples of steady and unsteady BEM simulations are given in a last section. The source code of a steady and unsteady BEM algorithm implemented in Matlab is given at the end of the chapter. The description of the BEM method includes the latest correction models that are derived and presented in Part IV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Bak, Aerodynamic design of wind turbine rotors. Risø-I-Report, October 2010

    Google Scholar 

  2. E. Branlard, Generation of time series from a spectrum: Generation of wind times series from the kaimal spectrum. generation of wave times series from the jonswap spectrum. Technical report, DTU Wind energy, Risø DTU National Laboratory for Sustainable Energy, February 2010

    Google Scholar 

  3. E. Branlard, M. Gaunaa, Development of new tip-loss corrections based on vortex theory and vortex methods. J. Phys. Conf. Ser. (Online) 555, 1–8 (2014)

    Google Scholar 

  4. E. Branlard, M. Gaunaa, Superposition of vortex cylinders for steady and unsteady simulation of rotors of finite tip-speed ratio. Wind Energy (2015)

    Google Scholar 

  5. E. Branlard, E. Machefaux, M. Gaunaa, H.H. Brandenborg Sørensen, N. Troldborg, Validation of vortex code viscous models using lidar wake measurements and CFD, in Proceedings (EWEA - The European Wind Energy Association, 2014)

    Google Scholar 

  6. E. Branlard, N. Troldborg, M. Gaunaa, A vortex based bem-like algorithm accounting for wake rotation, in Proceedings of EWEA Offshore 2015 Conference (2015)

    Google Scholar 

  7. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, 1st edn. (Wiley, New York, 2002)

    Google Scholar 

  8. R.P. Coleman, A.M. Feingold, C.W. Stempin, Evaluation of the induced-velocity field of an idealized helicopter rotor. NACA ARR No. L5E10 (1945), pp. 1–28

    Google Scholar 

  9. A. Craig Hansen, USER’S GUIDE to the Wind Turbine Aerodynamics Computer Software

    Google Scholar 

  10. O. De Vries, Fluid dynamic aspects of wind energy conversion. AGARD report, Brussels, Belgium, AG-243:1–50 (1979)

    Google Scholar 

  11. H. Glauert, A general theory of the autogyro. Technical report, NACA Reports and Memoranda No. 111 (1926)

    Google Scholar 

  12. H. Glauert, Airplane propellers, in Division L, ed. by W.F. Durand (Julius Springer, Berlin, 1935)

    Google Scholar 

  13. M.O.L. Hansen, Aerodynamics of Wind Turbines, 2nd edn. (Earthscan, London, 2008)

    Google Scholar 

  14. B.D. Hibbs, Hawt performance with dynamic stall. Technical report, Solar Energy Research Institute (1986)

    Google Scholar 

  15. J. Katz, A. Plotkin, Low-Speed Aerodynamics, vol. 13, 2nd edn. Cambridge aerospace series (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  16. T.J. Larsen, A.M. Hansen, HAWC2 - User manual. DTU-Risø-R-1597 (2007)

    Google Scholar 

  17. C. Lindenburg, Investigation into rotor blade aerodynamics. Technical report ECN-C-03-025, ECN (2003)

    Google Scholar 

  18. C.N.H. Lock, H. Bateman, H.C.H. Townend, An extension of the vortex theory of airscrew with applications to airscrews of small pitch, including experimental results. Report and Memoranda 1014, September 1925

    Google Scholar 

  19. H. Madsen, C. Bak, M. Døssing, R. Mikkelsen, S. Øye, Validation and modification of the blade element momentum theory based on comparisons with actuator disc simulations. Wind Energy 13, p373–389 (2010)

    Article  Google Scholar 

  20. J. Mann, Wind field simulation. Prob. Eng. Mech. 13(4), 269–282 (1998)

    Article  Google Scholar 

  21. J.F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained (Wiley, Chichester, 2003)

    Google Scholar 

  22. P.J. Moriarty, A. Craig Hansen, Aerodyn theory manual. Technical report, National Renewable Energy Laboratory, December 2005. NREL/EL-500-36881

    Google Scholar 

  23. S. Øye, ix Dynamisk, aeroelastisk beregning af vindmøllevinger. Report AFM83-08, Fluid Mechanics, DTU (1983)

    Google Scholar 

  24. S. Øye, Induced velocities for rotors in yaw - an extension of the blade element momentum method, in Sixth IEA Symposium on the Aerodynamics of Wind Turbines, ECN, Petten (1992), pp. 1–5

    Google Scholar 

  25. J.G. Schepers, An Engineering Model for Yawed Conditions, Developed on the Basis of Wind Tunnel Measurements. ECN-RX-98-057. Netherlands Energy Research Foundation ECN, Petten (1998)

    Google Scholar 

  26. H. Snel, J.G. Schepers, Joint investigation of dynamic inflow effects and implementation of an engineering method. Technical report, ECN-C–94-107, Energy Research Centre of the Netherlands, Petten (1995)

    Google Scholar 

  27. J.N. Sørensen, General Momentum Theory for Horizontal Axis Wind Turbines (Springer, Berlin, 2016)

    Book  Google Scholar 

  28. Q.R. Wald, The aerodynamics of propellers. Prog. Aerosp. Sci. 42, 85–128 (2006)

    Article  Google Scholar 

  29. R.E. Wilson, P.B.S. Lissaman, Applied aerodynamics of wind power machines. Technical report, Oregon State University, Corvallis, May 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Branlard .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Branlard, E. (2017). The Blade Element Momentum (BEM) Method. In: Wind Turbine Aerodynamics and Vorticity-Based Methods. Research Topics in Wind Energy, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-55164-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55164-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55163-0

  • Online ISBN: 978-3-319-55164-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics