Skip to main content

Second-Order Circuits

  • Chapter
  • First Online:
  • 1573 Accesses

Abstract

Find the equation of current as a function of time in a source-free series RLC circuit with initial capacitor voltage V 0, assuming that a series connected switch discharges the capacitor through R, L by closing at time t = 0.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beck CS, Pritchard WH, Feil HS (1947) Ventricular fibrillation of long duration abolished by electric shock. JAMA 135(15):985

    Article  Google Scholar 

  2. Kouwenhoven WB, Milnor WR (1954) Treatment of ventricular fibrillation using a capacitor discharge. J Appl Physiol 7:253

    Google Scholar 

  3. Tacker WA, Geddes LA, McFarlane II, Milnor W, Gullet J et al (1969) Optimum current duration for capacitor-discharge defibrillation of canine ventricles. J Appl Physiol 27(4):480

    Google Scholar 

  4. Mackay RS, Leeds SE (1953) Physiological effects of condenser discharges. J Appl Physiol 667

    Google Scholar 

  5. Edmark KW (1963) Simultaneous voltage and current waveforms generated during internal and external direct current defibrillation. Surg Forum 262

    Google Scholar 

  6. Lown B, Neuman J, Amarasingham R, Berkovitz BV (1962) Comparison of alternating current with direct current countershock. Am J Cardiol 10:223

    Article  Google Scholar 

  7. Kavanagh KM, Tang ASL, Rollins DL, Smith WM, Ideker RE (1989) A comparison of the internal defibrillation thresholds for monophasic, double and single capacitor biphasic waveforms. J Am Coll Cardiol 14(5):1343

    Article  Google Scholar 

  8. Flaker GC, Schuder JC, McDaniel WC, Stoeckle H, Dbeis M (1989) Superiority of biphasic shocks in the defibrillation of dogs by epicardial patches and catheter electrodes. Am Heart J 118:228

    Article  Google Scholar 

  9. White RD (2004) Waveforms for defibrillation and cardioversion: recent experimental and clinical studies. Curr Opin Crit Care 10(3):202–7

    Article  Google Scholar 

  10. Geddes LA, Havel W (2000) Evolution of the optimum bidirectional (+/− biphasic) wave for defibrillation. Biomed Instrum Technol 34(1):39–54

    Google Scholar 

  11. Morrison LJ, Dorian P, Long J, Vermeulen M, Schwartz B, Sawadsky B, Frank J, Cameron B, Burgess R, Shield J, Bagley P, Mausz V, Brewer JE, Lerman BB (2005) Out-of-hospital cardiac arrest rectilinear biphasic to monophasic damped sine defibrillation waveforms with advanced life support intervention trial (ORBIT). Recuscitation 66(2):149–57

    Article  Google Scholar 

  12. Walcott GP et al (1995) Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. J Cardiovasc Electrophysiol 6:737–750

    Google Scholar 

  13. Kroll MW (1994) A minimal model of the single capacitor biphasic defibrillation waveform. PACE 17:1782–1792

    Article  Google Scholar 

  14. Dixon et al (1987) Improved defibrillation thresholds With large contoured epicardial electrodes and biphasic waveforms. Circulation 76:1176–1184

    Google Scholar 

  15. Tang ASL et al (1989) Ventricular defibrillation using biphasic waveforms: the importance of phasic duration. J Am Coll Cardiol 13:207–214

    Google Scholar 

  16. Freeser SA et al (1990) Strength-duration and probability of success curves for defibrillation with biphasic waveforms. Circulation 82:2128–2141

    Article  Google Scholar 

  17. Babbs CF, Whistler SJ (1978) Evaluation of the operating internal resistance, inductance, and capacitance of intact damped sine wave defibrillators. Med Instrum 12(1):34–37

    Google Scholar 

  18. Jones VC, Charbonnier FM, Long P (1981) Determining transthoracic impedance, delivered energy, and peak current during defibrillation episodes. Med Instrum 15(6):380–382

    Google Scholar 

  19. Adams TP, Kroll MW (1999) Apparatus for generating biphasic waveforms in an implantable defibrillator. U S Patent 005(871):505A

    Google Scholar 

  20. Bardy GH et al (1989) A prospective randomized evaluation of biphasic vs. monophasic waveform pulses on defibrillation efficiency in humans. J Am Coll Cardiol 14:728–733

    Article  Google Scholar 

  21. Wyse DG et al (1993) Comparison of biphasic and monophasic shocks for defibrillation using a non-thoracotomy system. Am J Cardiol 71:197–202

    Article  Google Scholar 

  22. Cameron DB (1993) Uni-cable defibrillator paddles. US Patent: 5,203,347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ümit Keskin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Keskin, A.Ü. (2017). Second-Order Circuits. In: Electrical Circuits in Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55101-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55101-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55100-5

  • Online ISBN: 978-3-319-55101-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics