Operational Amplifiers

  • Ali Ümit KeskinEmail author


(a) Determine the [z], [y], and [h] parameters of the inverting op-amp circuit.


  1. 1.
    Palmer R (2001) DC parameters: input offset voltage (V IO). Texas instruments application report, SLOA059Google Scholar
  2. 2.
    Analog Devices Inc. Norwood, MA, USA.
  3. 3.
    Linear Technology, USA. Last accessed on 27 Dec 2016
  4. 4.
    TDK-EPCOS Last accessed on 27 Dec 2016
  5. 5.
  6. 6.
    Rehman M, Ahmed MT, Arif M (1990) Critical study and applications of a self-balancing bridge. In: IEE proceedings, (137 Part A 1):25Google Scholar
  7. 7.
    Madhu Mohan N, Geetha T, Sankaran P, Jagadeesh Kumar V (2008) Linearization of the output of a wheatstone bridge for single active sensor. In: Proceedings of 16th IMEKO TC4 Symposium 09/2008Google Scholar
  8. 8.
    Lin PM (1985) Simple design procedure for a general summer. Electron Eng 57:37–38Google Scholar
  9. 9.
    Stotts LJ (1989) Introduction to implantable biomedical IC design. IEEE Circ Dev Mag:12–18Google Scholar
  10. 10.
    Kafe F, Psychalinos C (2014) Realization of companding filters with large time-constants for biomedical applications. Analog Integr Circ Signal Process: 217–231Google Scholar
  11. 11.
    Li Y, Wong AKY, Zhang YT (2010) Fully-integrated transimpedance amplifier for photo-plethysmographic signal processing with two-stage Miller capacitance multiplier. Electron Lett 46(11):745–746CrossRefGoogle Scholar
  12. 12.
    Bustos SS, Silva H, Sanches E (2000) A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications. IEEE Trans Circ Syst Analog Dig Sig Process 47:1391–1398CrossRefGoogle Scholar
  13. 13.
    Martinez JS, Alejandro Vázquez A (1998) Impedance scalers for IC active filters. In: IEEE international symposium on circuits and systems: 51–154Google Scholar
  14. 14.
    Kulej T (2009) Regulated capacitance multiplier in CMOS technology. In: International conference on mixed design of integrated circuits and systems, pp 316–319Google Scholar
  15. 15.
    Darweesh HY, Farag FA, Khalaf YA (2007) New active capacitance multiplier for low cutoff frequency filter design. In: Proceedings of 19th International Conference on Microelectronics (ICM’07), pp 381–384Google Scholar
  16. 16.
    Karki J (2002) Analysis of the Sallen-Key architecture. Texas Instruments Inc., Application Report SLOAO24B: p 5Google Scholar
  17. 17.
    Kerwin W, Huelsman L, Newcomb R (1967) State variable synthesis for insensitive integrated circuit transfer functions. IEEE J Solid-State Circ SC-2:87–92Google Scholar
  18. 18.
    Soliman AM (2008) History and progress of the Kerwin–Huelsman–Newcomb filter generation and Op Amp realizations. J Circ Syst Comput 17(4):637CrossRefGoogle Scholar
  19. 19.
    Soliman AM (2011) Generation of Kerwin-Huelsman-Newcomb biquad filter circuits using nodal admittance matrix expansion. Int J Circuit Theory Appl 39(7):697–717CrossRefGoogle Scholar
  20. 20.
    Senani R, Singh VK (1995) KHN-equivalent biquad using current conveyors. Electron Lett 31:626–628CrossRefGoogle Scholar
  21. 21.
    Salama KN, Soliman AM (2000) Voltage mode Kerwin-Huelsman-Newcomb circuit using CDBAs. Frequenz 54:90–93Google Scholar
  22. 22.
    Toker A, Ozoguz S, Acar C (1999) Current-mode KHN-equivalent biquad using CDBAs. Electron Lett 35:1682–1683CrossRefGoogle Scholar
  23. 23.
    Keskin AU, Cam U (2007) Insensitive high-output impedance minimum configuration SITO-type current-mode biquad using dual-output current conveyors and grounded passive components AEU-Int. J Electron Commun 61:341–344Google Scholar
  24. 24.
    Keskin AU, Biolek D, Hancioglu E, Biolkova V (2006) Current-mode KHN filter employing current differencing transconductance amplifiers. AEU-Int J Electron Commun 60(6):443–446CrossRefGoogle Scholar
  25. 25.
    Universal Active Filter Data Sheet (2010) SBFS002B UAF 42 Texas Instruments IncGoogle Scholar
  26. 26.
    Mancini R (2000) Design of op amp sine wave oscillators. Analog Appl J Texas Instrum Inc.:33–37Google Scholar
  27. 27.
    Keskin AU, Biolek D (2006) Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc Circ Devices Syst 153(3):214–218Google Scholar
  28. 28.
    Keskin AU, Aydın C, Hancıoğlu E, Acar C, (2006) Quadrature oscillators using current differencing buffered amplifiers. Frequent (J RF-Eng Telecommun) 60(3–4):57–59Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringYeditepe UniversityIstanbulTurkey

Personalised recommendations