Skip to main content

Temperature Sensing Properties of High Density Polyethylene Loaded with Oxidized Multi Walled Carbon Nanotubes

  • Conference paper
  • First Online:
Sensors (CNS 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 431))

Included in the following conference series:

  • 1523 Accesses

Abstract

Good temperature sensing properties from room temperature up to 100 °C have been obtained, with high density polyethylene/carbon nanotube composites even for nanotube concentrations slightly above the percolation threshold in the case that oxidized multi-walled carbon nanotubes have been used. Due to the low conductivity no Joule heating has to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Arai, C. Ng, P. Liu, L. Dong, Y. Imaizumi, K. Maeda, H. Maruyama, A. Ichikawa, T. Kukuda. Ultra-small site temperature sensing by carbon nanotube thermal probes, in Proceedings of the 4th IEEE Conference on Nanotechnology, (2004), 146–148

    Google Scholar 

  2. E. Manek, B. Berke, N. Miklósi, M. Sajbán, A. Domán, T. Fukuda, O. Czakkel, K. László, Thermal sensitivity of carbon nanotube and graphene oxide containing responsive hydrogels. Exp. Polym. Lett. 10, 710–720 (2016)

    Article  Google Scholar 

  3. C. Barone, S. Pagano, H.C. Neitzert, Transport and noise spectroscopy of MWCNT/HDPE composites with different nanotube concentrations. J. Appl. Phys. 110, 113716 (2011)

    Article  Google Scholar 

  4. Y. Alamusi, N. Li, L. Hu, W. Wu, X. Yuan, B. Peng, C. Gu, Y. Chang, H. Liu, J. Ning, S. Li, S. Atobe, H. Fukunaga, Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance. Nanotechnology 24, 455501 (2013)

    Article  Google Scholar 

  5. H.C. Neitzert, L. Vertuccio, A. Sorrentino, Epoxy/MWCNT composite as temperature sensor and electrical heating elements. IEEE Trans. Nanotechnol. 9, 688–693 (2010)

    Google Scholar 

  6. R. Di Giacomo, B. Maresca, A. Porta, P. Sabatino, G. Carapella, H.C. Neitzert, Candida albicans/MWCNTs: a stable conductive bionanocomposite and its temperature sensing properties IEEE Trans. Nanotechnol. 12, 111–114 (2013)

    Google Scholar 

  7. A. Naeemi, J.D. Meindl, Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Dev. Lett. 28, 135–138 (2007)

    Article  Google Scholar 

  8. C. Barone, G. Landi, C. Mauro, H.C. Neitzert, S. Pagano, Universal crossover of the charge carrier fluctuation mechanism in different polymer/carbon nanotubes composites. Appl. Phys. Lett. 107, 143106 (2015)

    Article  Google Scholar 

  9. W.R. Fahrner, G. Landi, R. Di Giacomo, H.C. Neitzert. Multi-walled carbon nanotube network-based sensors and electronic devices, in The Nano-Micro Interface: Bridging the Micro and Nano Worlds, eds. by H.-J. Fecht, M. Werner, M. Van de Voorde, (Wiley-VCH, Verlag, 2015), pp. 225–242

    Google Scholar 

  10. H.C. Neitzert, G. Landi. Influence of the contact metallization on the characteristics of resistive temperature sensors based on EPOXY/MWCNT composites, Chapter 58, in Sensors, Proceedings of the Second National Conference on Sensors, Rome 19–21 February, 2014 Series. Lecture notes in electrical engineering, vol. 319, (Springer, Berlin, 2015), pp. 333–337

    Google Scholar 

  11. X.L. He, J.H. Du, Z. Ying, H.M. Cheng, X.J. He, Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl. Phys. Lett. 86, 062112 (2005)

    Article  Google Scholar 

  12. S.P. Bao, G.D. Liang, S.C. Tjong, Positive temperature coefficient effect of polypropylene/carbon nanotube/montmorillonite hybrid nanocomposites. IEEE Trans. Nanotechnol. 8, 729–736 (2009)

    Article  Google Scholar 

  13. K. Chu, S.C. Lee, S. Lee, D. Kim, C. Moon, S.H. Park, Smart conducting polymer composites having zero temperature coefficient of resistance. Nanoscale 7, 471–478 (2015)

    Article  Google Scholar 

  14. S. Liparoti, G. Landi, A. Sorrentino, V. Speranza, M. Cakmak, H.C. Neitzert, Flexible poly(amide-imide)-carbon black based microheater with high-temperature capability and an extremely low temperature coefficient. Adv. Electron. Mater. 2, 1600126 (2016)

    Article  Google Scholar 

  15. H.C. Neitzert, O. Valentino, M. Sarno, M.R. Nobile, P. Ciambelli, PTC elements based on high density polyethylene loaded with multi-walled carbon nanotubes, in Proceedings of the 7th International Conference on Nanostructured Polymers and Nanocomposites (ECNP), Prague, 24–27 April 2012, pp. 383–385

    Google Scholar 

  16. Y. Woo, G.S. Duesberg, S. Roth, Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18, 095203 (2007)

    Article  Google Scholar 

  17. M. Ferrara, H.C. Neitzert, M. Sarno, G. Gorrasi, D. Sannino, V. Vittoria, P. Ciambelli, Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNTs composites. Phys. E 37, 66 (2007)

    Article  Google Scholar 

  18. M.R. Nobile, E. Somma, O. Valentino, G. Simon, H.C. Neitzert, Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites. AIP Conf. Proc. 1736, 020150 (2016)

    Article  Google Scholar 

  19. Olga Valentin, PhD thesis, Salerno (2008)

    Google Scholar 

  20. O. Valentino, M. Sarno, N.G. Rainone, M.R. Nobile, P. Ciambelli, H.C. Neitzert, G.P. Simon, Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys. E 40, 2440–2445 (2008)

    Article  Google Scholar 

  21. C. Barone, S. Pagano, H.C. Neitzert, Effect of concentration on low-frequency noise of multiwall carbon nanotubes in high-density polyethylene matrix. Appl. Phys. Lett. 97, 152107 (2010)

    Article  Google Scholar 

  22. H.C. Neitzert, O. Valentino, M. Sarno, M.R. Nobile, P. Ciambelli, PTC elements based on high density polyethylene loaded with multi-walled carbon nanotubes, in Proceedings of the 7th International Conference on Nanostructured Polymers and Nanocomposites (ECNP), Prague, 24–27 April (2012), pp. 383–385

    Google Scholar 

  23. R. Di Giacomo, H.C. Neitzert, HDPE/MWCNT composite as microwave absorber. AIP Conf. Proc. 1593, 282–285 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. George P. Simon from Monash University (Australia) for the CNT and composite preparation and Dr. Olga Valentino from Polimeri Europa for the composite sample preparation and the structural characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Christoph Neitzert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Neitzert, HC., Landi, G., Nobile, M.R. (2018). Temperature Sensing Properties of High Density Polyethylene Loaded with Oxidized Multi Walled Carbon Nanotubes. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-319-55077-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55077-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55076-3

  • Online ISBN: 978-3-319-55077-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics