Skip to main content

PDMS Template Generator for Wearable Thermoelectric Energy Harvesting Applications

  • Conference paper
  • First Online:
Sensors (CNS 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 431))

Included in the following conference series:

Abstract

Thermoelectric pastes based on Sb, Bi, Te powders were prepared, characterized and used to fabricate a flexible thermoelectric generator (TEG) for wearable harvesting applications. By Finite Element Method (FEM) simulations, the TEG design was finalized to optimize electrical model and match typical thermal resistances of human body skin, in order to maximize its thermoelectric performance. The thermopile is composed by 450 couples of p-Sb2Te3 and n-Bi2Te3 deposited by blade coating into vertical parallel cavities of a patterned polydimethylsiloxane (PDMS) through-holes layer. Each leg has diameter of 1.5 mm and height of 2.5 mm. The p-n couples were electrically connected by printed silver contact. By preliminary functional tests, a Seebeck coefficient of about 75 µV/K for p-n couple on best conditions was measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Francioso, C. De Pascali, P. Siciliano, Experimental assessment of thermoelectric generator package properties: simulated results validation and real gradient capabilities. Energy 86(15), 300–310 (2015)

    Article  Google Scholar 

  2. F. Jiao, C. Di, Y. Sun, P. Sheng, D. Zhu, W. Xu, Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Phil. Trans. R. Soc. A 372, 20130008 (2014). doi:10.1098/rsta.2013.0008

    Article  Google Scholar 

  3. Z. Lu, M. Layani, X. Zhao, L.P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, H.H. Hng, Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10(17), 3551–3554 (2014). doi:10.1002/smll.201303126

  4. K. Suemori, S. Hoshino, T. Kamata, Flexible and lightweight thermoelectric generators composed of carbon nanotube–polystyrene composites printed on film substrate. Appl. Phys. Lett. 103, 153902 (2013)

    Article  Google Scholar 

  5. L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, A. Perrone, Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J. Power Sources 196(6), 3239–3243 (2011)

    Article  Google Scholar 

  6. L. Francioso, C. De Pascali, A. Taurino, P. Siciliano, A. De Risi, Wearable and flexible thermoelectric generator with enhanced package. Proc. SPIE Int. Soc. Opt. Eng. Conf. Smart Sensors Actuators MEMS VI 8763, 876306 (2013)

    Article  Google Scholar 

  7. L. Francioso, C. De Pascali, R. Bartali, E. Morganti, L. Lorenzelli, P. Siciliano, N. Laidani, PDMS/kapton interface plasma treatment effects on the polymeric package for a wearable thermoelectric generator. ACS Appl. Mater. Interfaces 5(14), 6586–6590 (2013)

    Article  Google Scholar 

  8. J.P. Carmo, L.M. Goncalves, R.F. Wolffenbuttel, J.H. Correia, A planar thermoelectric power generator for integration in wearable microsystems. Sens. Actuators A 161(1–2), 199–204 (2010)

    Article  Google Scholar 

  9. P.H. Kao, P.J. Shih, C.L. Dai, M.C. Liu, Fabrication and characterization of CMOS-MEMS thermoelectric micro generators. Sensors 10, 1315–1325 (2010)

    Article  Google Scholar 

  10. Z. Yuan, K. Ziouche, Z. Bougrioua, P. Lejeune, T. Lasri, D. Leclercq, A planar micro thermoelectric generator with high thermal resistance. Sensors Actuators A 221, 67–76 (2015)

    Article  Google Scholar 

  11. E.J. Bae, Y.H. Kang, K.S. Jang, S.Y. Cho, Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment. Scientific Reports 6, Article number: 18805 (2016)

    Google Scholar 

  12. Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 25, 966–976 (2015). doi:10.1002/adfm.201402663

    Article  Google Scholar 

  13. V. Leonov, Human machine and thermoelectric energy scavenging for wearable devices. ISRN Renewable Energy 2011, Article ID 785380, 11 p. (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Francioso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Francioso, L., De Pascali, C., Grazioli, A., Sglavo, V., Lorenzelli, L. (2018). PDMS Template Generator for Wearable Thermoelectric Energy Harvesting Applications. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds) Sensors. CNS 2016. Lecture Notes in Electrical Engineering, vol 431. Springer, Cham. https://doi.org/10.1007/978-3-319-55077-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55077-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55076-3

  • Online ISBN: 978-3-319-55077-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics