Skip to main content

Mathematical Preliminaries

  • Chapter
  • First Online:
  • 1133 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 466))

Abstract

To ease readability and minimize the need of external references, this chapter introduces all required mathematical preliminaries for the later analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Let X be a non-empty set. The triple \((X, +, \cdot )\) with “inner” composition \(+\) (addition) and “outer” composition \(\mathbb {F}\times X \rightarrow X, \; (\alpha ,\, \varvec{v}) \mapsto \alpha \cdot \varvec{v}\) (scalar multiplication) is called vector space (over a field \(\mathbb {F}\)), if following axioms hold: (i) \((X,+)\) is an Abelian group [8, p. 57], (ii) \(\alpha \cdot (\varvec{v} + \varvec{w}) = \alpha \cdot \varvec{v} + \alpha \cdot \varvec{w}\) and \((\alpha + \beta )\cdot \varvec{v} = \alpha \cdot \varvec{v} + \beta \cdot \varvec{v}\) for all \(\alpha , \beta \in \mathbb {F}\) and \(\varvec{v},\varvec{w} \in X\) (distributivity) and (iii) \(\alpha \cdot (\beta \cdot \varvec{v}) = \alpha \, \beta \cdot \varvec{v}\) and \(1\cdot \varvec{v} = \varvec{v}\) with multiplicative identity \(1 \in \mathbb {F}\) for all \(\alpha , \beta \in \mathbb {F}\) and \(\varvec{v} \in X\) [8, p. 119].

  2. 2.

    For a definition see [8, p. 73].

  3. 3.

    A set \(C \subset \mathbb {R}^m\), \(m\in \mathbb {N}\), is compact, if and only if, C is closed and bounded (Heine-Borel theorem, see [8, Theorem 3.5] or [327, Theorems 2–6 I]).

  4. 4.

    If X is any non-empty collection of elements \(x, y, z,\ldots \) and there exists a function \(d_X:X \times X \rightarrow \mathbb {R}_{\ge 0}\) with the properties (i) \(d_X(x, y) = d_X(y, x)\) (symmetry), (ii) \(d_X(x, z) \le d_X(x, y) + d_X(y, z)\) (triangular inequality) and (iii) \(d_X(x, y) = 0\) if and only if \(x=y\), then \((X, d_X)\) is called metric space with the metric \(d_X\) on X. \(d_X(x, y)\) is called the distance between x and y (see [327, pp. 111–112] or [8, pp. 142, 143]).

  5. 5.

    A metric space \((X, d_X)\) with metric \(d_X:X \times X \rightarrow \mathbb {R}_{\ge 0}\) is complete, if every Cauchy sequence converges in X. A complete normed vector space is called Banach space (see [8, pp. 187, 188]).

  6. 6.

    A vector space X over a field K with norm induced by the scalar (or inner) product \(\langle \cdot ,\cdot \rangle :\, X \times X \rightarrow K\) [8, p. 165] (e.g. the Euclidean norm \(\Vert \cdot \Vert _2 = \sqrt{\langle \cdot ,\cdot \rangle }\) is such a norm) is called inner product space. A complete inner product space is a Hilbert space [8, p. 189].

  7. 7.

    A standard basis of the Euclidean space \(\mathbb {R}^n\) consists of unit vectors \(\varvec{e}_k = (\varvec{0}_{k-1}^{\top }, \, 1, \,\varvec{0}_{n-k}^{\top })^{\top }\) for all \(k \in \{1, \ldots , n\}\), where each unit vector \(\varvec{e}_k\) points in the direction of the k-th axis of the Cartesian coordinate system; e.g. for \(\mathbb {R}^3\), the basis vectors are given by \(\varvec{e}_1 = (1, 0, 0)^{\top }\), \(\varvec{e}_2 = (0, 1, 0)^{\top }\) and \(\varvec{e}_3 = (0, 0, 1)^{\top }\) (see [100, pp. 76, 81] or [8, Beispiel I.12.4]). The standard basis is orthonormal, since \(\Vert \varvec{e}_k \Vert = 1\) (having unit or normalized length) and \(\langle \varvec{e}_k,\, \varvec{e}_l\rangle = \varvec{e}_k^{\top }\varvec{e}_l = 0\) for all \(k \ne l \in \{1, \ldots , n\}\) (orthogonality) (see [100, p. 273]).

  8. 8.

    An interval \(I\subseteq \mathbb {R}\) has the following property: \(x, z \in I:\, x<z \; \Rightarrow \; \forall \, x< y < z:y \in I\) [8, p. 107]. Let \(a, b \in \mathbb {R}\) with \(a<b\), then e.g. (ab), [ab), (ab] or [ab] and \(\emptyset \) are intervals.

  9. 9.

    A subset \(I^n \subset \mathbb {R}^n\) is called interval of \(\mathbb {R}^n\), if there exist (line) intervals \(I_k \subset \mathbb {R}\) such that \(I^n = \prod _{k=1}^n \, I_k\). For \(\varvec{v}=(v_1, \ldots , v_n)^{\top }, \, \varvec{w}=(w_1, \ldots , w_n)^{\top } \in \mathbb {R}^n\) with \(v_k \le w_k\) for all \(k \in \{1, \ldots , n\}\), write \((\varvec{v}, \, \varvec{w}) := \prod _{k = 1}^n(v_k,\, w_k)\), \((\varvec{v}, \, \varvec{w}] := \prod _{k = 1}^n(v_k,\, w_k]\), \([\varvec{v}, \, \varvec{w}) := \prod _{k = 1}^n[v_k,\, w_k)\) or \([\varvec{v}, \, \varvec{w}] := \prod _{k = 1}^n[v_k,\, w_k]\). The interval \(I^n = (\varvec{v}, \, \varvec{w})\) is open, whereas the interval \(I^n = [\varvec{v}, \, \varvec{w}]\) is closed [10, p. 8].

  10. 10.

    A collection \(\mathcal {B}(X)\) of subsets of X is called \(\sigma \)-algebra, if it has following properties: (i) \(X \in \mathcal {B}(X)\) (hence \(\mathcal {B}(X)\) is non-empty), (ii) \(B \in \mathcal {B}(X) \Rightarrow (X \setminus B) \in \mathcal {B}(X)\) and (iii) \(B_{n} \in \mathcal {B}(X) \text { for all } n \in \mathbb {N}\Rightarrow \bigcup _{n \in \mathbb {N}} B_{n} \in \mathcal {B}(X)\). Note that each \(\sigma \)-algebra includes also \(\emptyset \) [10, p. 3].

  11. 11.

    Here \(\mathfrak {P}(X)\) denotes the power set of \(X \subseteq \mathbb {R}^n\). The power set \(\mathfrak {P}(X)\) of a set X consists of all subsets of X (e.g. \(\emptyset \in X \in \mathfrak {P}(X)\) [8, p. 10]).

  12. 12.

    Let \((X, \mathcal {B}(X), \mu )\) be a measure space. A measure \(\mu \) is called non-increasing, if \(X_1 \subset X_2 \subseteq X\) implies \(\mu (X_1) \le \mu (X_2)\) [10, Satz IX.2.3(iii)]. A mapping \(\mu :\mathfrak {P}(X) \rightarrow [0,\, \infty ]\) is called \(\sigma \)-subadditive, if for every sequence \(\{A_k\}_{k \in \mathbb {N}}\) with \(A_k \in \mathfrak {P}(X)\) the following holds \(\mu (\bigcup _{k = 1}^{\infty } A_k) \le \sum _{k = 1}^{\infty } \mu (A_k)\) [10, p. 17].

  13. 13.

    A proper interval \(I \subseteq \mathbb {R}\) has \(\mu _L(I)>0\) (it is non-empty and consists of more than one element) [8, p. 107].

  14. 14.

    Let \((I,\mathcal {A},\mu _L)\) be a measurable space. A function \(\varvec{f}:I \rightarrow Y\) is said to be simple, if it has following properties: (i) \(\varvec{f}(I) := \{ \varvec{f}(x) \in Y \, \vert \, x \in I \; \}\) is finite, (ii) \(\varvec{f}^{-1}(\varvec{y}) \in \mathcal {A}\) for all \(\varvec{y} \in Y\) and (iii) \(\mu _L(\varvec{f}^{-1}(\mathbb {R}^n \setminus \{\varvec{0}\}))<\infty \) where \(\varvec{f}^{-1}(\mathbb {R}^n \setminus \{\varvec{0}\}) := \{ \; x \in I \, \vert \, \varvec{f}(x) \ne \varvec{0}\; \}\) [10, p. 65].

  15. 15.

    For a definition of a Cauchy-sequence in the context of semi-norms, see [10, p. 86].

  16. 16.

    Let X be a non-empty set and \(A \subset X\). Then the indicator (or characteristic) function [8, p. 18] of A is given by

    $$ \chi _A:\, A \rightarrow \{0, 1\}, \qquad x \mapsto \chi _A(x) := {\left\{ \begin{array}{ll} 1, &{} x\in A \\ 0, &{} x\in X \setminus A. \end{array}\right. } $$
  17. 17.

    For more details on Cauchy-Riemann integration, see [9, Abschnitt VI.3].

  18. 18.

    A semi-norm has the properties (np\(_2\)) and (np\(_3\)) of a norm (see p. 33) whereas (np\(_1\)) is replaced by \(\Vert \varvec{x} \Vert \ge 0\) for all \(\varvec{x} \in Y\) (see [10, p. 85]).

  19. 19.

    A set \(U \subset \mathbb {R}^n\), \(n \in \mathbb {N}\), is said to be a neighborhood of \(\varvec{x}_{0} \in \mathbb {R}^n\), if and only if, there exists \(\delta >0\) such that \(\mathbb {B}^n_{\delta }(\varvec{x}_{0}) \subset U\) (see [8, p. 144]). Clearly, for \(\varvec{x}_{0} \in \mathbb {R}^n\) and \(\delta >0\), \(\overline{\mathbb {B}}^n_{\delta }(\varvec{x}_{0})\) is a neighborhood around \(\varvec{x}_{0}\).

  20. 20.

    A transfer function (5.46) is causal, if and only if, \(n \ge m\) in (5.45).

  21. 21.

    The Laplace transform of a function \(f(\cdot ) \in \mathcal {L}^{1}_{{{\mathrm{loc}}}}(\mathbb {R}_{\ge 0};\mathbb {R})\) is defined by \(f(s):=\mathscr {L}\left\{ f(t)\right\} :=\int _0^{\infty }f(t)\exp (-st)\mathrm{\, d} t \,\) or with \(\mathfrak {R}(s) \ge \alpha \), if there exists \(\alpha \in \mathbb {R}\) such that \([t \mapsto \exp (-\alpha t)f(t)] \in \mathcal {L}^{1}(\mathbb {R}_{\ge 0};\mathbb {R})\) [149, S. 742]. The inverse of the Laplace transform is given by \(f(t)=\mathscr {L}^{-1}\left\{ f(s)\right\} \) or . \(\mathcal {L}^{p}_{({{\mathrm{loc}}})}(I;Y)\) is the space of measurable, (locally) p-integrable functions mapping \(I \rightarrow Y\) and \(\mathfrak {R}(s)\) denotes the real part of the complex variable \(s \in \mathbb {C}\).

  22. 22.

    Actually, all coefficients must have the same sign. The negative case is not considered. Note that any polynomial \(p_{-}(s)\in \mathbb {R}[s]\) with only negative coefficients can be rendered into a polynomial \(p_{+}(s)=-p_{-}(s)\) with only positive coefficients.

  23. 23.

    Nowadays, it is common to use the term “high-frequency gain” for both system descriptions in the time (state space) and in the frequency (transfer function) domain. Formerly, “high-frequency gain” denoted the “leading coefficient” of the numerator of the transfer function, whereas “instantaneous gain” was equivalently used in the time domain (see [62]).

  24. 24.

    For stable systems of form (5.44), the system matrix \(\varvec{A}\) is Hurwitz which implies \(\det (\varvec{A})\ne 0\). Hence, the inverse \(\varvec{A}^{-1}\) exists.

  25. 25.

    Definition 5.83 (Comparison function classes \(\mathcal {K}\), \(\mathcal {K}_{\infty }\) and \(\mathcal {KL}\))

    For \(0 <\bar{x} \le \infty \), \(\alpha (\cdot ) \in \mathcal {C}([0,\bar{x});\mathbb {R}_{\ge 0})\) and \(\beta (\cdot ,\cdot ) \in \mathcal {C}( \mathbb {R}_{\ge 0}\times [0,\bar{x});\mathbb {R}_{\ge 0})\), the classes of the comparison functions are defined as follows:

    $$ \begin{array}{llll} \boxed {\text {class }\mathcal {K}:} &{} \alpha (\cdot ) \in \mathcal {K}&{} :\Longleftrightarrow &{} \left\{ \begin{array}{ll} \text {(i)} &{} \lim _{x \rightarrow 0}\alpha (x) = 0 \quad \wedge \quad \\ \text {(ii)} &{} \forall \, x\in (0,\bar{x}):\; \alpha (x)> 0 \quad \wedge \quad \\ \text {(iii)} &{} \forall \, x_2, x_1 \in (0,\bar{x}) :\; x_2 \ge x_1 \\ &{} \quad \;\Rightarrow \; \alpha (x_2) \ge \alpha (x_1)>0 \\ &{} (\alpha (\cdot ) \,\text {is monotonically increasing)}. \end{array}\right. \\ \boxed {\text {class } \mathcal {K}_{\infty }:} &{} \alpha (\cdot ) \in \mathcal {K}_{\infty }&{} :\Longleftrightarrow &{} \left\{ \begin{array}{ll} \text {(i)} &{} \alpha (\cdot ) \in \mathcal {K}\quad \wedge \quad \\ \text {(ii)} &{} \bar{x} = \infty \quad \wedge \quad \\ \text {(iii)} &{} \lim _{x \rightarrow \infty }\alpha (x) = \infty . \end{array}\right. \\ \boxed {\text {class } \mathcal {KL}:} &{} \beta (\cdot ,\cdot ) \in \mathcal {KL}&{} :\Longleftrightarrow &{} \left\{ \begin{array}{ll} \text {(i)} &{} \forall \, t \ge 0:\beta (t,\cdot ) \in \mathcal {K}\quad \wedge \quad \\ \text {(ii)} &{} \forall \, x_0 \in [0,\bar{x}):\\ &{} \text {(a)} \; \forall \, t_2 \ge t_1 \ge 0 \; \Rightarrow \; \beta (t_2, x_0) \le \beta (t_1, x_0) \\ &{} \quad (\beta (\cdot , x_0)\, \text {is monotonically decreasing)}\\ &{} \text {(b)} \; \lim _{t \rightarrow \infty } \beta (t, x_0) = 0. \end{array}\right. \end{array} $$

    For example, \(x \mapsto 1-e^{-x} \in \mathcal {K}\) but \(\notin \mathcal {K}_{\infty }\) or \((t, x) \mapsto \tfrac{1}{1 + t} \, x \in \mathcal {KL}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph M. Hackl .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hackl, C.M. (2017). Mathematical Preliminaries. In: Non-identifier Based Adaptive Control in Mechatronics. Lecture Notes in Control and Information Sciences, vol 466. Springer, Cham. https://doi.org/10.1007/978-3-319-55036-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55036-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55034-3

  • Online ISBN: 978-3-319-55036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics