Skip to main content

Experimental Study on Wireless Mobile Sensor Configurations for Output-Only Modal Identification of a Beam Testbed

  • Conference paper
  • First Online:
Book cover Sensors and Instrumentation, Volume 5

Abstract

This paper studies how a particular variation in a wireless mobile sensor configuration can influence modal identification accuracy. A mobile sensor network simultaneously measures vibration data in time while scanning over a large set of points in space. Previous research has demonstrated that such data can be specified under the dynamic sensor network (DSN) data class and examined using the truncated physical state-space model (TPM). The extended structural dentification using expectation maximization (STRIDEX) algorithm is applied to determine maximum likelihood estimates of the TPM model parameters, which are related to structural modal properties. With this approach, numerous mode shape ordinates can be extracted from each sensor, exemplifying the advantageous spatial information provided by mobile sensors as well as DSN data in general.

In the experiments, a step-motor and pulley system drove mobile sensing cars, each equipped with a wireless accelerometer, across the longitudinal span of a beam testbed. Feedback between the motor and a computer provided a precise spatial grid and accurate time-stamped positions for the sensors. Given four mobile sensors (two groups of two sensor cars), sensor configurations were designed with different distances between the groups. Two sensor configurations were applied through the experimental platform and the identification results are compared to those obtained using fixed sensors. The work builds on a previous study on this testbed which considered two mobile sensor arrangements: one in which the sensor groups moved in the same direction and the other in which they moved in opposition. This study considers a constant distance between the sensor groups, which move in the same direction, at the same speed, and examine the potential influence on modal identification, further contributing to experimental results with mobile sensors. At a greater scale, measurements from this data class represent idealized bridge response measurements collected by public smartphones. Crowdsourced data streams could contribute greatly to the health monitoring of critical bridges across the country.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandit, S.M.: Modal and spectrum analysis: data dependent systems in state space. Wiley-Interscience, New York (1991)

    MATH  Google Scholar 

  2. Van Overschee, P., De Moor, B.: N4SID: Subspace Algorithms for the Identification of Combined Deterministic-Stochastic Systems. Automatica. 30(1), 75–93 (1992)

    Article  MATH  Google Scholar 

  3. James III, G.H., Carrie, T.G., Lauffer, J.P., et al.: The Natural Excitation Technique (NExT) for Modal Parameter Extraction From Operating Wind Turbines. Sandia National Labs, Albuquerque (1993)

    Google Scholar 

  4. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Cont. Dyn. 8, 620–627 (1984)

    Article  MATH  Google Scholar 

  5. He, X., De Roeck, G.: System identification of mechanical structures by a high-order multivariate autoregressive model. Comput. Struct. 64, 341–351 (1997)

    Article  MATH  Google Scholar 

  6. Brincker, R., Zhang, L., Andersen, P.: Modal identification of output-only systems using frequency domain decomposition. Measurement. 10, 441–445 (2000)

    Google Scholar 

  7. Chang, M., Pakzad, S.N.: Observer Kalman filter identification for output-only systems using Interactive Structural Modal Identification Toolsuite (SMIT). J. Bridg. Eng. 1–11 (2013). doi: 10.1061/(ASCE)BE.1943-5592.0000530

  8. Eftekhar Azam, S., Chatzi, E., Papadimitriou, C.: A dual Kalman filter approach for state estimation via output-only acceleration measurements. Mech. Syst. and Signal Process. 60, 866–886 (2015). doi:10.1016/j.ymssp.2015.02.001

    Article  Google Scholar 

  9. Matarazzo, T.J., Pakzad, S.N.: STRIDE for structural identification using expectation maximization: iterative output-only method for modal identification. J. Eng. Mech. (2016). doi:10.1061/(ASCE)EM.1943-7889.0000951

    Google Scholar 

  10. Matarazzo, T.J., Pakzad, S.N.: Structural modal identification for mobile sensing with missing observations. J. Eng. Mech. 142, 1–18 (2016). doi:10.1061/(ASCE)EM.1943-7889.0001046

    Google Scholar 

  11. Matarazzo, T.J., Pakzad, S.N.: Scalable structural modal identification using dynamic sensor network data with STRIDEX. Submitted to Journal of Intelligent Robotics. (2017)

    Google Scholar 

  12. Ko, J.M., Ni, Y.Q.: Technology developments in structural health monitoring of large-scale bridges. Eng. Struct. 27, 1715–1725 (2005). doi:10.1016/j.engstruct.2005.02.021

    Article  Google Scholar 

  13. Pakzad, S.N., Fenves, G.L.: Statistical analysis of vibration modes of a suspension bridge using spatially dense wireless sensor network. J. Struct. Eng. 135, 863–872 (2009). doi:10.1061/?ASCE?ST.1943-541X.0000033

    Article  Google Scholar 

  14. Kim, S., Pakzad, S., Culler, D., et al.: Health monitoring of civil infrastructures using wireless sensor networks. 2007 6th International Symposium on Information Processing in Sensor Networks. 254–263 (2007). doi:10.1109/IPSN.2007.4379685

  15. Lynch, J.P., Loh, K.J.: A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Dig. 38, 91–128 (2006). doi:10.1177/0583102406061499

    Article  Google Scholar 

  16. Papadimitriou, C., Beck, J.L., Au, S.-K.: Entropy-based optimal sensor location for structural model updating. J. Vib. Control. 6, 781–800 (2000). doi:10.1177/107754630000600508

    Article  Google Scholar 

  17. Chang, M., Pakzad, S.N.: Optimal sensor configuration for flexible structures with multi-dimensional mode shapes. Smart Mater. Struct. 24, 55012 (2015). doi:10.1088/0964-1726/24/5/055012

    Article  Google Scholar 

  18. Liu, W., Gao, W., Sun, Y., Xu, M.: Optimal sensor placement for spatial lattice structure based on genetic algorithms. J. Sound Vib. 317, 175–189 (2008). doi:10.1016/j.jsv.2008.03.026

    Article  Google Scholar 

  19. Sun, H., Büyüköztürk, O.: Optimal sensor placement in structural health monitoring using discrete optimization. Smart Mater. Struct. 24, 125034 (2015). doi:10.1088/0964-1726/24/12/125034

    Article  Google Scholar 

  20. Lynch, J.P.: Decentralization of wireless monitoring and control technologies for smart civil structures. Stanford University (2002)

    Google Scholar 

  21. Zimmerman, A.T., Shiraishi, M., Swartz, R.A., Lynch, J.P.: Automated modal parameter estimation by parallel processing within wireless monitoring systems. J. Infrastruct. Syst. 14, 102–113 (2008). doi:10.1061/(ASCE)1076-0342(2008)14:1(102)

    Article  Google Scholar 

  22. Rice, J.A., Mechitov, K., Sim, S.H., et al.: Flexible smart sensor framework for autonomous structural health monitoring. Smart Struct. Syst. 6, 423–438 (2010). doi:10.12989/sss.2010.6.5_6.423

    Article  Google Scholar 

  23. Unnikrishnan, J., Vetterli, M.: Sampling and reconstructing spatial fields using mobile sensors. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (2012). doi:10.1109/ICASSP.2012.6288742

  24. Matarazzo, T.J., Pakzad, S.N.: Truncated physical model for dynamic sensor networks with applications in high-resolution mobile sensing and BIGDATA. J. Eng. Mech. (2016). doi:10.1061/(ASCE)EM.1943-7889.0001022

    Google Scholar 

  25. Horner, M., Kosner, K., Korneva, K., et al.: A wireless mobile sensor platform for structural health monitoring. In: Proceedings of the Joint 6th International Conference on Advances in Experimental Structural Engineering (6AESE) and 11th International Workshop on Advanced Smart Materials and Smart Structures Technology (11ANCRiSST), pp. 1–7. Urbana-Champaign, Champaign (2015)

    Google Scholar 

  26. Matarazzo, T.J., Horner, M., Kosner, K., Pakzad, S.N.: Multiphase mobile sensor network for beam health monitoring. IABMAS 2016. 8th International Conference on Bridge Maintenance, Safety and Management. pp. 186, (2016)

    Google Scholar 

  27. Spencer, Jr. B.F.: Getting started guide for new users – programming the ISHMP toolsuite V3.0 and collecting data with Imote2s. (2011)

    Google Scholar 

  28. Cantieni, R.: Dynamic Behavior of Highway Bridges. EMPA, Düubendorf (1992)

    Google Scholar 

  29. Kwasniewski, L., Wekezer, J., Roufa, G., et al.: Experimental evaluation of dynamic effects for a selected highway bridge. J. Perform. Constr. Facil. 20, 253–260 (2006)

    Article  Google Scholar 

  30. Au, S.K.: Uncertainty law in ambient modal identification – part II: implication and field verification. Mech. Syst. Signal Process. 48, 34–48 (2013). doi:10.1016/j.ymssp.2013.07.016

    Article  Google Scholar 

  31. Allemang, R.J., Brown, D.L.: A correlation coefficient for modal vector analysis. In: Proceedings of the 1st international modal analysis conference, vol. 1, pp. 110–116. SEM, Orlando (1982)

    Google Scholar 

Download references

Acknowledgement

Research funding is partially provided by the National Science Foundation through Grant No. CMMI-1351537 by Hazard Mitigation and Structural Engineering program and by a grant from the Commonwealth of Pennsylvania, Department of Community and Economic Development, through the Pennsylvania Infrastructure Technology Alliance (PITA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavana Valeti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Valeti, B., Matarazzo, T.J., Pakzad, S.N. (2017). Experimental Study on Wireless Mobile Sensor Configurations for Output-Only Modal Identification of a Beam Testbed. In: Wee Sit, E., Walber, C., Walter, P., Seidlitz, S. (eds) Sensors and Instrumentation, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54987-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54987-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54986-6

  • Online ISBN: 978-3-319-54987-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics