Skip to main content

Technologies for the Bio-conversion of GHGs into High Added Value Products: Current State and Future Prospects

  • Chapter
  • First Online:
Carbon Footprint and the Industrial Life Cycle

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Today, methane (CH4) and nitrous oxide (N2O) emissions represent 20% of the total greenhouse gas (GHG) inventory worldwide. CH4 is the second most important GHG emitted nowadays based on both its global warming potential (25 times higher than that of CO2) and its emission rates, while N2O is the main O3-depleting substance emitted in this 21st century. However, despite their environmental relevance and the forthcoming stricter legislation on atmospheric GHG emissions, the development of cost-efficient and environmentally friendly GHG treatment technologies is still limited. In this context, an active bio-technological abatement of CH4 and N2O emissions combined with the production of high added value products can become a profitable alternative to mitigate GHGs emissions. The feasible revalorization of diluted CH4 emissions from landfills has been recently tested in bioreactors with the production of ectoine, a microbial molecule with a high retail value in the cosmetic industry (approximately $1300 kg−1), as well as with the generation of polyhydroxyalkanoates (PHAs), a commodity with potential to replace conventional petroleum-derived polymers. This CH4 bio-refinery approach can be also based on the biogas produced from anaerobic digestion, therefore improving the economic viability of this waste management technology. The N2O contained in emissions from nitric acid production processes can be also considered as a potential substrate for the production of PHAs, with the subsequent increase in the cost-effectiveness of the abatement strategies of this GHG. On the other hand, the off-gas N2O abatement from diluted wastewater treatment plant emissions has been recently confirmed, although at the expense of a high input of electron donor due to the need to first deplete the O2 transferred from the emission. This chapter constitutes a critical review of the state-of-the-art of the potential and research niches of bio-technologies applied in a CH4 and N2O bio-refinery approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akdeniz, N., Janni, K. A., & Salnikov, I. A. (2011). Biofilter performance of pine nuggets and lava rock as media. Bioresource Technology, 102(8), 4974–4980. doi:10.1016/j.biortech.2011.01.058

  • Auman, A. J., & Lidstrom, M. E. (2002). Analysis of sMMO-containing type I methanotrophs in Lake Washington sediment. Environmental Microbiology, 4(9), 517–524. doi:10.1046/j.1462-2920.2002.00323.x

  • Avalos Ramirez, A., García-Aguilar, B. P., Jones, J. P., & Heitz, M. (2012). Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochemistry, 47(1), 76–82. doi:10.1016/j.procbio.2011.10.007

  • Beun, J. J., Verhoef, E. V, Van Loosdrecht, M. C. M., & Heijnen, J. J. (2000). Stoichiometry and kinetics of poly-beta-hydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures. Biotechnology and Bioengineering, 68(5), 496–507. doi:10.1002/(SICI)1097-0290(20000220)67:4<379::AID-BIT1>3.0.CO;2-2

  • Bowman, J. P., Jimenez, L., Rosario, I., Hazen, T. C., & Sayler, G. S. (1993). Characterization of the methanotrophic bacterial community present in a trichloroethylene-contaminated subsurface groundwater site. Applied and Environmental Microbiology, 59(8), 2380–2387.

    CAS  Google Scholar 

  • Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808. doi:10.3144/expresspolymlett.2014.82.

    Article  Google Scholar 

  • Burgess, B. K., & Lowe, D. J. (1996). Mechanism of molybdenum nitrogenase. Chemical Reviews, 96(7), 2983–3012. doi:10.1021/cr950055x

  • Bussmann, I., Pester, M., Brune, A., & Schink, B. (2004). Preferential cultivation of type II methanotrophic bacteria from littoral sediments (lake constance). FEMS Microbiology Ecology, 47(2), 179 LP-189. Retrieved from http://femsec.oxfordjournals.org/content/47/2/179.abstract

  • But, S. Y., Rozova, O. N., Khmelenina, V. N., Reshetnikov, A. S., & Trotsenko, Y. A. (2012). Properties of recombinant ATP-dependent fructokinase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Moscow), 77(4), 372–377. doi:10.1134/S0006297912040086

  • Cal, A. J., Sikkema, W. D., Ponce, M. I., Franqui-Villanueva, D., Riiff, T. J., Orts, W. J., & Lee, C. C. et al. (2016). Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. International Journal of Biological Macromolecules, 87, 302–307. doi:10.1016/j.ijbiomac.2016.02.056

  • Caldwell, S. L., Laidler, J. R., Brewer, E. A., Eberly, J. O., Sandborgh, S. C., & Colwell, F. S. (2008). Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental Science and Technology. doi:10.1021/es800120b

  • Cantera, S., Estrada, J. M., Lebrero, R., García-Encina, P. A., & Muñoz, R. (2015). Comparative performance evaluation of conventional and two-phase hydrophobic stirred tank reactors for methane abatement: Mass transfer and biological considerations. Biotechnology and Bioengineering, 113(6), 1203–1212. doi:10.1002/bit.25897.

    Article  Google Scholar 

  • Cantera, S., Lebrero, R., García-Encina, P. A., & Muñoz, R. (2016a). Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures. Journal of Environmental Management, 171, 11–20.

    Google Scholar 

  • Cantera, S., Lebrero, R., Sadornil, L., García-Encina, P. A., & Muñoz, R. (2016b). Valorization of CH4 emissions into high-added-value products: Assessing the production of ectoine coupled with CH4 abatement. Journal of Environmental Management, 182, 160–165.

    Google Scholar 

  • Carlsen, H. N., Joergensen, L., & Degn, H. (1991). Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath). Applied Microbiology and Biotechnology, 35(1), 124–127. doi:10.1007/BF00180649

  • Castilho, L. R., Mitchell, D. A., & Freire, D. M. G. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100(23), 5996–6009. doi:10.1016/j.biortech.2009.03.088

  • Chanprateep, S. (2010). Current trends in biodegradable polyhydroxyalkanoates. Journal of Bioscience and Bioengineering, 110(6), 621–632. doi:10.1016/j.jbiosc.2010.07.014

  • Chen, G.-Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. doi:10.1039/b812677c

  • Chen, G.-Q. (2010a). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In G. Q. Chen (Ed.), Plastics from Bacteria: Natural Functions and Applications (1st edn, pp. 17–38). Heidelberg: Springer.

    Google Scholar 

  • Chen, G.-Q. (2010b). Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. Plastics from Bacteria: Natural Functions and Applications, 14, 121–132. doi:10.1007/978-3-642-03287_5

  • Chiemchaisri, W., Wu, J. S., & Visvanathan, C. (2001). Methanotrophic production of extracellular polysaccharide in landfill cover soils. Water Science and Technology, 43, 151–158.

    CAS  Google Scholar 

  • Cui, M., Ma, A., Qi, H., Zhuang, X., & Zhuang, G. (2015). Anaerobic oxidation of methane: An “active” microbial process. MicrobiologyOpen, 4(1), 1–11. doi:10.1002/mbo3.232

  • Daugulis, A. J. (2001). Two-phase partitioning bioreactors: A new technology platform for destroying xenobiotics. Trends in Biotechnology, 19(11), 457–462. doi:10.1016/S0167-7799(01)01789-9

  • de Dieu Ndikubwimana, J. & Lee, B. H. (2014). Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnology Letters, 36(10), 1917–1926. doi:10.1007/S10529-014-1587-1

  • den Camp, H. J. M. O., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Schouten, S., … Dunfield, P. F. (2009). Minireview environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 1(5), 293–306. doi:10.1111/j.1758-2229.2009.00022.x

  • Desloover, J., Puig, S., Virdis, B., Clauwaert, P., Boeckx, P., Verstraete, W., & Boon, N. (2011). Biocathodic nitrous oxide removal in bioelectrochemical systems. Environmental Science & Technology, 45(24), 10557–10566. doi:10.1021/es202047x

  • Desloover, J., Roobroeck, D., Heylen, K., Puig, S. S., Boeckx, P., Verstraete, W., & Boon, N. (2014). Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Environmental Microbiology, 16(10), 3143–3152. doi:10.1111/1462-2920.12404

  • Doi, Y., Kitamura, S., & Abe, H. (1995). Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 28(14), 4822–4828. doi:10.1021/ma00118a007

  • Estrada, J. M., Lebrero, R., Quijano, G., Pérez, R., Figueroa-González, I., García-Encina, P. A., & Muñoz, R. (2014). Methane abatement in a gas-recycling biotrickling filter: Evaluating innovative operational strategies to overcome mass transfer limitations. Chemical Engineering Journal, 253, 385–393. doi:10.1016/j.cej.2014.05.053

  • Estrada, J. M., Rodríguez, E., Quijano, G., & Muñoz, R. (2012). Influence of gaseous VOC concentration on the diversity and biodegradation performance of microbial communities. Bioprocess and Biosystems Engineering, 35(9), 1477–1488. doi:10.1007/S00449-012-0737-x

  • European Environment Agency. (2015). European environment—State and outlook 2015: Assessment of global megatrends. European Environment. doi:10.2800/45773

  • Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: The “house of biofilm cells.” Journal of Bacteriology, 189(22), 7945–7947. doi:10.1128/JB.00858-07

  • Flemming, H., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. doi:10.1038/nrmicro2415

  • Frutos, O. D., Arvelo, I. A., Pérez, R., Quijano, G., & Muñoz, R. (2014). Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber. Applied Microbiology and Biotechnology, 99(8), 3695–3706. doi:10.1007/s00253-014-6329-8

  • Frutos, O. D., Cortes, I., Arnaiz, E., Lebrero, R., & Muñoz, R. (2016a). Biological nitrous oxide abatement by paracoccus denitrificans in bubble column and airlift reactors, 54, 289–294. doi:10.3303/CET1654049

  • Frutos, O. D., Quijano, G., Pérez, R., & Muñoz, R. (2016b). Simultaneous biological nitrous oxide abatement and wastewater treatment in a denitrifying off-gas bioscrubber. Chemical Engineering Journal, 288, 28–37. doi:10.1016/j.cej.2015.11.088

  • Frutos OD, Cortes I, Cantera S, Arnaiz E, Lebrero R, Muñoz R (Under review). Nitrous oxide abatement coupled to biopolymer production as a model GHG biorefinery for cost-effective climate change mitigation.

    Google Scholar 

  • Galego, N., Rozsa, C., Sánchez, R., Fung, J., Vázquez, A., & Santo Tomás, J. (2000). Characterization and application of poly(3-hydroxyalkanoates) family as composite biomaterials. Polymer Testing, 19(5), 485–492. doi:10.1016/0142-9418(99)00011-2

  • Galinski, E. A., & Trüper, H. G. (1994). Microbial behaviour in salt-stressed ecosystems. FEMS Microbiology Reviews, 15(2–3), 95–108. doi:10.1111/j.1574-6976.1994.tb00128.x

  • Garcia-Ochoa, F., Santos, V. E., Casas, J. A., & Gomez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. doi:10.1016/S0734-9750(00)00050-1

  • Girard, M., Ramirez, A. A., Buelna, G., & Heitz, M. (2011). Biofiltration of methane at low concentrations representative of the piggery industry-Influence of the methane and nitrogen concentrations. Chemical Engineering Journal, 168(1), 151–158. doi:10.1016/j.cej.2010.12.054

  • Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471.

    Google Scholar 

  • Harding, K. G., Dennis, J. S., von Blottnitz, H., & Harrison, S. T. L. (2007). Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-3-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology, 130(1), 57–66. doi:10.1016/j.jbiotec.2007.02.012

  • Helm, J., Wendlandt, K.-D., Jechorek, M., & Stottmeister, U. (2008). Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane-utilizing mixed culture. Journal of Applied Microbiology, 105(4), 1054–1061. doi:10.1111/j.1365-2672.2008.03831.x

  • Henckel, T., Roslev, P., Conrad, R., & Mikrobiologie, È. (2000). Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environmental Microbiology, 2, 666–679. doi:10.1046/j.1462-2920.2000.00149.x.

    Article  CAS  Google Scholar 

  • Hernández, J., Gómez-Cuervo, S., & Omil, F. (2015). EPS and SMP as stability indicators during the biofiltration of diffuse methane emissions. Water, Air, & Soil Pollution, 226(10), 343. doi:10.1007/s11270-015-2576-2

  • Hilger, H. A., Cranford, D. F., & Barlaz, M. A. (2000). Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology and Biochemistry, 32(4), 457–467. doi:10.1016/S0038-0717(99)00101-7

  • Hood, M. C. (2011). Design and operation of a biofilter for treatment of swine house pit ventilation exhaust. Master science thesis, North Carolina State University

    Google Scholar 

  • Hood, M. C., Shah, S. B., Kolar, P., & Stikeleather, L. F. (2011). Design and operation of a biofilter for treatment of swine house pit ventilation exhaust. American Society of Agricultural and Biological Engineers Annual International Meeting 2011, ASABE 2011, 1, 448–468. http://www.scopus.com/inward/record.url?eid=2-s2.0-81255188695&partnerID=tZOtx3y1

  • Jahnke, L. L., & Nicholst, P. D. (1986). Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions. Journal of Bacteriology, 167(1), 238–242.

    Article  CAS  Google Scholar 

  • Kennelly, C., Gerrity, S., Collins, G., & Clifford, E. (2014). Liquid phase optimisation in a horizontal flow biofilm reactor (HFBR) technology for the removal of methane at low temperatures. Chemical Engineering Journal, 242, 144–154. doi:10.1016/j.cej.2013.12.071

  • Khmelenina, V. N., Kalyuzhnaya, M. G., Starostina, N. G., Suzina, N. E., & Trotsenko, Y. A. (1997). Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Current Microbiology, 35(5), 257–261. doi:10.1007/s002849900249

  • Khmelenina, Y. N., Eshinimaev, B. T., Kalyuzhnaya, M. G., & Trotsenko, Y. A. (2000). Potential activity of methane and ammonium oxidation by methanotrophic communities from the soda lakes of southern Transbaikal. Microbiology, 69(4), 460–465. doi:10.1007/BF02756771

  • Kim, J.-B., Cho, K.-S., Jeong, S.-K., Nam, S.-W., Do Jeong, H., & Kim, J. K. (2008). Identification and characterization of a pigment-producing denitrifying bacterium. Biotechnology and Bioprocess Engineering, 13(2), 217–223. doi:10.1007/s12257-007-0201-y

  • Kirti, K., Amita, S., Priti, S., Kumar, A. M., & Jyoti, S. (2014). Colorful world of microbes: Carotenoids and their applications. Advances in Biology, 2014(1), 1–13. doi:10.1155/2014/837891

  • Knief, C. (2015). Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Frontiers in Microbiology, 6, 1346. doi:10.3389/fmicb.2015.01346

  • Koller, M., Atlić, A., Dias, M., Reiterer, A., Braunegg, G., & Atli, A. (2010). Microbial PHA production from waste raw materials. In Plastics from bacteria: Natural functions and applications (pp. 85–119). Heidelberg: Springer. doi:10.1007/978-3-642-03287-5_5

  • Kraakman, N. J. R., Rocha-Rios, J., & Van Loosdrecht, M. C. M. (2011). Review of mass transfer aspects for biological gas treatment. Applied Microbiology and Biotechnology, 91(4), 873. doi:10.1007/s00253-011-3365-5

  • Lang, Y., Bai, L., Ren, Y., Zhang, L., & Nagata, S. (2011). Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T. Extremophiles, 15(2), 303–310. doi:10.1007/s00792-011-0360-9

  • Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2014). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 39(2), 397–442. doi:10.1016/j.progpolymsci.2013.06.008

  • Lebrero, R. (2013). Comparative evaluation of conventional and innovative biotechnologies for odour abatement in wastewater treatment plants (Doctoral thesis). Universidad de Valladolid, Valladolid, Spain. http://uvadoc.uva.es/handle/10324/2880

  • Lebrero, R., Hernández, L., Pérez, R., Estrada, J. M., & Muñoz, R. (2015). Two-liquid phase partitioning biotrickling filters for methane abatement: Exploring the potential of hydrophobic methanotrophs. Journal of Environmental Management, 151, 124–131. doi:10.1016/j.jenvman.2014.12.016

  • Lebrero, R., Lopez, J. C., Lehtinen, I., Perez, R., Quijano, G., & Muñoz, R. (2016). Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter. Chemosphere, 144, 97–106. doi:10.1016/j.chemosphere.2015.08.017

  • López, J. C., Quijano, G., Pérez, R., & Muñoz, R. (2014). Assessing the influence of CH4 concentration during culture enrichment on the biodegradation kinetics and population structure. Journal of Environmental Management, 146, 116–123. doi:10.1016/j.jenvman.2014.06.026

  • López, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R., & Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: State of the art and challenges. Applied Microbiology and Biotechnology, 97(6), 2277–2303. doi:10.1007/s00253-013-4734-z

  • Malashenko, I. P., Pirog, T. P., Romanovskaia, V. A, Sokolov, I. G., & Gringerg, T. A. (2001). Search for methanotrophic producers of exopolysaccharides. Prikladnaia Biokhimiia I Mikrobiologiia, 37(6), 702–705. doi:10.1023/A:1012307202011

  • Matsumoto, T., Yamamura, H., Hayakawa, J., Watanabe, Y., & Harayama, S. (2014). Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process. Water Science and Technology, 69(9), 1919–1925. http://wst.iwaponline.com/content/69/9/1919.abstract

  • McDonald, I. R., Bodrossy, L., Chen, Y., & Murrell, J. C. (2008). Molecular ecology techniques for the study of aerobic methanotrophs. Applied and Environmental Microbiology, 74(5), 1305–1315. doi:10.1128/AEM.02233-07

  • Ménard, C., Ramirez, A. A., Nikiema, J., & Heitz, M. (2012). Effect of trace gases, toluene and chlorobenzene, on methane biofiltration: An experimental study. Chemical Engineering Journal, 204205, 8–15. doi:10.1016/j.cej.2012.07.070

  • Modin, O., Fukushi, K., Nakajima, F., & Yamamoto, K. (2008). A membrane biofilm reactor achieves aerobic methane oxidation coupled to denitrification (AME-D) with high efficiency. Water Science and Technology, 58(1), 83–87. doi:10.2166/wst.2008.648

  • Morris, G., & Harding, S. (2009). Polysaccharides, microbial. In M. Schaechter (Ed.), Encyclopedia of microbiology (3rd ed., pp. 482–494). New York: Elsevier.

    Chapter  Google Scholar 

  • Muñoz, R., Daugulis, A. J., Hernández, M., & Quijano, G. (2012). Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnology Advances, 30(6), 1707–1720. doi:10.1016/j.biotechadv.2012.08.009

  • Muñoz, R., Villaverde, S., Guieysse, B., & Revah, S. (2007). Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnology Advances, 25(4), 410–422. doi:10.1016/j.biotechadv.2007.03.005

  • Murrell, J. C., McDonald, I. R., & Gilbert, B. (2000). Regulation of expression of methane monooxygenases by copper ions. Trends in Microbiology, 8(5), 221–225. doi:10.1016/S0966-842X(00)01739-X

  • Myung, J., Flanagan, J. C. A., Waymouth, R. M., & Criddle, C. S. (2015a). Methane or methanol-oxidation dependent synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by obligate type II methanotrophs. Process Biochemistry, 51(5), 561–567. doi:10.1016/j.procbio.2016.02.005

  • Myung, J., Galega, W. M., Van Nostrand, J. D., Yuan, T., Zhou, J., & Criddle, C. S. (2015b). Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresource Technology, 198, 811–818. doi:10.1016/j.biortech.2015.09.094.

  • Myung, J. (2016). Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. In Recovery of resources and energy using methane-utilizing bacteria: Synthesis and regeneration of biodegradable, tailorable bioplastics and production of nitrous oxide. Dissertation, Stanford University (California, US).

    Google Scholar 

  • Myung, J., Kim, M., Pan, M., Criddle, C. S., & Tang, S. (2016). Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresource Technology, 207, 302–307. doi:10.1016/j.biortech.2016.02.029

  • Nath, A., Dixit, M., Bandiya, A., Chavda, S., & Desai, A. J. (2008). Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresource Technology, 99(13), 5749–5755. doi:10.1016/j.biortech.2007.10.017

  • Nikiema, J., Brzezinski, R., & Heitz, M. (2007). Elimination of methane generated from landfills by biofiltration: a review. Reviews in Environmental Science and Biotechnology, 6(4), 261–284. doi:10.1007/s11157-006-9114-z

  • Nikiema, J., & Heitz, M. (2009). The influence of the gas flow rate during methane biofiltration on an inorganic packing material. Canadian Journal of Chemical Engineering, 87(1), 136–142. doi:10.1002/cjce.20131

  • Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences, 13(11), 14002–14015. doi:10.3390/ijms131114002

  • Park, S., Lee, C. H., Ryu, C. R., & Sung, K. (2009). Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water, Air, and Soil Pollution, 196(1–4), 19–27. doi:10.1007/s11270-008-9754-4

  • Pastor, J. M., Salvador, M., Argandoña, M., Bernal, V., Reina-Bueno, M., Csonka, L. N., et al. (2010). Ectoines in cell stress protection: Uses and biotechnological production. Biotechnology Advances, 28(6), 782–801. doi:10.1016/j.biotechadv.2010.06.005

  • Pérez-Ramírez, J., Kapteijn, F., Schöffel, K., & Moulijn, J. A. (2003). Formation and control of N2O in nitric acid production: Where do we stand today? Applied Catalysis B: Environmental, 44(2), 117–151. doi:10.1016/S0926-3373(03)00026-2

  • Pieja, A. J., Rostkowski, K. H., & Criddle, C. S. (2011a). Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microbial Ecology, 62(3), 564–573. doi:10.1007/s00248-011-9873-0

  • Pieja, A. J., Sundstrom, E. R., & Criddle, C. S. (2011b). Poly-3-hydroxybutyrate metabolism in the type II methanotroph methylocystis parvus OBBP. Applied and Environmental Microbiology, 77(17), 6012–6019. doi:10.1128/AEM.00509-11

  • Pieja, A. J., Sundstrom, E. R., & Criddle, C. S. (2012). Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresource Technology, 107, 385–392. doi:10.1016/j.biortech.2011.12.044

  • Rahnama, F., Vasheghani-Farahania, E., Yazdian F, & Shojaosadati, S. A. (2012). PHB production by Methylocystis hirsuta from natural gas in a bubble column and a vertical loop bioreactor. Biochemical Engineering Journal, 65, 51–56. doi:10.1016/j.bej.2012.03.014

  • Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123–125. doi:10.1126/science.1176985

  • Reshetnikov, A. S., Mustakhimov, I. I., Khmelenina, V. N., & Trotsenko, Y. A. (2005). Cloning, purification, and characterization of diaminobutyrate acetyltransferase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Biochemistry (Moscow), 70(8), 878–883. doi:10.1007/s10541-005-0197-x

  • Rocha-Rios, J., Bordel, S., Hernández, S., & Revah, S. (2009). Methane degradation in two-phase partition bioreactors. Chemical Engineering Journal, 152(1), 289–292. doi:10.1016/j.cej.2009.04.028

  • Rocha-Rios, J., Kraakman, N. J. R., Kleerebezem, R., Revah, S., Kreutzer, M. T., & van Loosdrecht, M. C. M. (2013). A capillary bioreactor to increase methane transfer and oxidation through Taylor flow formation and transfer vector addition. Chemical Engineering Journal, 217, 91–98. doi:10.1016/j.cej.2012.11.065

  • Rocha-Rios, J., Quijano, G., Thalasso, F., Revah, S., & Muñoz, R. (2011). Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. Journal of Chemical Technology and Biotechnology, 86(3), 353–360. doi:10.1002/jctb.2523

  • Rostkowski, K. H., Criddle, C. S., & Lepech, M. D. (2012). Cradle-to-gate life cycle assessment for a cradle-to-cradle cycle: Biogas-to-bioplastic (and back). Environmental Science and Technology, 46(18), 9822–9829. doi:10.1021/es204541w

  • Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. International Journal of Biological Sciences, 4(6), 379–386.

    Article  CAS  Google Scholar 

  • Sauer, T., & Galinski, E. A. (1998). Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnolnogy and Bioengineering, 57(3), 306–313.

    Article  CAS  Google Scholar 

  • Sazinsky, M. H., & Lippard, S. J. (2015). Methane monooxygenase: Functionalizing methane at iron and copper. Metal Ions in Life Sciences. doi:10.1007/978-3-319-12415-5_6

  • Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., et al. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27(5), 409–455. doi:10.1177/0734242X09339325

  • Semrau, J. D. (2011). Bioremediation via methanotrophy: Overview of recent findings and suggestions for future research. Frontiers in Microbiology, 2(10), 1–7. doi:10.3389/fmicb.2011.00209

  • Semrau, J. D., Dispirito, A. A., & Yoon, S. (2010). Methanotrophs and copper. FEMS Microbiology Reviews, 34(4), 496–531. doi:10.1111/j.1574-6976.2010.00212.x

  • Shen, L., Haufe, J., & Patel, M. K. (2009). Product overview and market projection of emerging bio-based plastics. Group Science, Technology and Society, 6, 41. doi:10.1002/9780470697474.ch1

  • Steinbüchel, A., & Valentin, H. E. (1995). Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters, 128(3), 219–228. doi:10.1016/0378-1097(95)00125-O

  • Strong, P. J., Kalyuzhnaya, M., Silverman, J., & Clarke, W. P. (2016). A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation. Bioresource Technology, 215, 314–323. doi:10.1016/j.biortech.2016.04.099

  • Strong, P. J., Xie, S., & Clarke, W. P. (2015). Methane as a resource: Can the methanotrophs add value? Environmental Science and Technology, 49(7), 4001–4018.

    Article  CAS  Google Scholar 

  • Sun, F., Dong, W., Shao, M., Lv, X., Li, J., Peng, L., et al. (2013). Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: Treatment performance and the effect of oxygen ventilation. Bioresource Technology, 145, 2–9. doi:10.1016/j.biortech.2013.03.115

  • Sundstrom, E. R., & Criddle, C. S. (2015). Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system. Applied and Environmental Microbiology, 81(14), 4767–4773. doi:10.1128/aem.00025-15

  • Timmers, P. H., Suarez-Zuluaga, D. A., Van Rossem, M., Diender, M., Stams, A. J., & Plugge, C. M. (2016). Suppl.: Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater source. ISME Journal, 10, 1400–1412. doi:10.1017/CBO9781107415324.004

  • Van Der Ha, D., Nachtergaele, L., Kerckhof, F. M., Rameiyanti, D., Bossier, P., Verstraete, W., & Boon, N. (2012). Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environmental Science and Technology, 46(24), 13425–13431. doi:10.1021/es303929s

  • Vieten, B., Conen, F., Seth, B., & Alewell, C. (2008). The fate of N2O consumed in soils. Biogeosciences, 5(1), 129–132. doi:10.5194/bg-5-129-2008

  • Wei, X. M., Su, Y., Zhang, H. T., Chen, M., & He, R. (2015). Responses of methanotrophic activity, community and EPS production to CH4 and O2 concentrations in waste biocover soils. Waste Management, 42, 118–127. doi:10.1016/j.wasman.2015.04.005

  • Wendlandt, K. D., Jechorek, M., Helm, J., & Stottmeister, U. (2001). Producing poly-3-hydroxybutyrate with a high molecular mass from methane. Journal of Biotechnology, 86(2), 127–133. doi:10.1016/S0168-1656(00)00408-9

  • Whittenbury, R. D. H. (1981). The methylotrophic bacteria. In M. P. Tarr, H. Stolp, H. G. Trüper, A. Balows, & H. G. Schlegel (Eds.), The prokaryotes: A handbook on habitats, isolation, and identification of bacteria (pp. 894–902). Berlin: Springer.

    Chapter  Google Scholar 

  • Wilshusen, J. H., Hettiaratchi, J. P. A., De Visscher, A., & Saint-Fort, R. (2004a). Methane oxidation and formation of EPS in compost: Effect of oxygen concentration. Environmental Pollution, 129(2), 305–314. doi:10.1016/j.envpol.2003.10.015

  • Wilshusen, J. H., Hettiaratchi, J. P. A., & Stein, V. B. (2004b). Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Management, 24(7), 643–653. doi:10.1016/j.wasman.2003.12.006

  • Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037. doi:10.1016/j.watres.2011.11.080

  • Yoshida, H., Kotani, Y., Ochiai, K., & Araki, K. (1998). Production of ubiquinone-10 using bacteria. The Journal of General and Applied Microbiology, 44(1), 19–26. doi:10.2323/jgam.44.19

  • Zhang, L. H., Lang, Y. J., & Nagata, S. (2009). Efficient production of ectoine using ectoine-excreting strain. Extremophiles, 13(4), 717–724. doi:10.1007/s00792-009-0262-2

  • Zhang, T., Zhou, J., Wang, X., & Zhang, Y. (2015). Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. Journal of Environmental Sciences (China), 52(2017), 49–57. doi:10.1016/j.jes.2016.03.001

  • Zhang, Y., Xin, J., Chen, L., Song, H., & Xia, C. (2008). Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. Journal of Natural Gas Chemistry, 17(1), 103–109. doi:10.1016/S1003-9953(08)60034-1

  • Zumft, W. G. (1997). Cell biology and molecular basis of denitrification†. Microbiology and Molecular Biology Reviews: MMBR, 61(4), 533–616.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Union through the project CTM2015-70.442-R (Retos and FEDER Programs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Muñoz Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cantera, S., Frutos, O.D., López, J.C., Lebrero, R., Torre, R.M. (2017). Technologies for the Bio-conversion of GHGs into High Added Value Products: Current State and Future Prospects. In: Álvarez Fernández, R., Zubelzu, S., Martínez, R. (eds) Carbon Footprint and the Industrial Life Cycle. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-54984-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54984-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54983-5

  • Online ISBN: 978-3-319-54984-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics