Skip to main content

A Software-Defined Networking (SDN) Approach to Mitigating DDoS Attacks

  • Conference paper
  • First Online:
Information Technology - New Generations

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 558))

Abstract

Distributed Denial of Service (DDoS) attacks are a common threat to network security. Traditional mitigation approaches have significant limitations in addressing DDoS attacks. This paper reviews major traditional approaches to DDoS, identifies and discusses their limitations, and proposes a Software-Defined Networking (SDN) model as a more flexible, efficient, effective, and automated mitigation solution. This study focuses on Internet Service Provider (ISP) networks and uses the SDN security implementation at Verizon networks as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akamai. (2016). State of the Internet combined executive review. Retrieved from: https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/state-of-the-internet-report-connectivity-executive-review-q1-2016-akamai.pdf

  2. Al-Ali, Z., Al-Duwairi, B., & Al-Hammouri, A.T. (2015). c DDoS attacks and flash crowd events. 2015 I.E. 2nd International Conference on Cyber Security and Cloud Computing.

    Google Scholar 

  3. Alqahtani, S., & Gamble, R. F. (2015). DDoS attacks in service clouds. 2015 48th Hawaii International Conference on System Sciences, 5331–5340.

    Google Scholar 

  4. Behal, S., & Kumar, K. (2016). Trends in validation of DDoS research. Procedia Computer Science, 85, 7–15.

    Article  Google Scholar 

  5. Benton, K., Camp, L. J., & Small, C. (2013). OpenFlow vulnerability assessment. Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking – HotSDN ’13, pp. 151–152.

    Google Scholar 

  6. Bhuyan, M. H., Bhattacharyya, D., & Kalita, J. (2015). An empirical evaluation of information metrics for low-rate and high-rate DDoS attack detection. Pattern Recognition Letters, 51, 1–7.

    Article  Google Scholar 

  7. Braga, R., Mota, E., & Passito, A. (2010). Lightweight DDoS flooding attack detection using NOX/OpenFlow. IEEE Local Computer Network Conference, 408–415.

    Google Scholar 

  8. Chen, C., & Chang, C. (2013). A two-tier coordination system against DDoS attacks. International Journal of Online Engineering (iJOE), 9(4), 15–21.

    Article  Google Scholar 

  9. David, J., & Thomas, C. (2015). DDoS attack detection using fast entropy approach on flow-based network traffic. Procedia Computer Science, 50, 30–36.

    Article  Google Scholar 

  10. Deshpande, H. A. (2015). Honey Mesh: Preventing distributed denial of service attacks using virtualized honeypots. International Journal of Engineering Research & Technology, 4(8), 263–267.

    Article  Google Scholar 

  11. Fichera, S., Galluccio, L., Grancagnolo, S. C., Morabito, G., & Palazzo, S. (2015). OPERETTA: An OPEnflow-based REmedy to mitigate TCP SYNFLOOD attacks against web servers. Computer Networks, 92, 89–100.

    Article  Google Scholar 

  12. Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., & Maglaris, V. (2014). Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments. Computer Networks, 62, 122–136.

    Article  Google Scholar 

  13. Jantila, S., & Chaipah, K. (2016). A security analysis of a hybrid mechanism to defend DDoS attacks in SDN. Procedia Computer Science, 86, 437–440.

    Article  Google Scholar 

  14. Jun, J., Ahn, C., & Kim, S. (2014). DDoS attack detection by using packet sampling and flow features. Proceedings of the 29th Annual ACM Symposium on Applied Computing - SAC ’14, pp. 185–190.

    Google Scholar 

  15. Jyothi, V., Wang, X., Addepalli, S. K., & Karri, R. (2016). BRAIN: Behavior based adaptive intrusion detection in networks: Using hardware performance counters to detect DDoS attacks. 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), 587–588.

    Google Scholar 

  16. Krylov, V., Kravtsov, K., & Sokolova, E. (2016). Fast IP hopping protocol SDI implementation. Indian Journal of Science and Technology, 8(36), 1–7.

    Article  Google Scholar 

  17. Li, J., Berg, S., Zhang, M., Reiher, P., & Wei, T. (2014). DrawBridge – Software-defined DDoS resistant traffic engineering. Proceedings of the 2014 ACM conference on SIGCOMM – SIGCOMM ’14, pp. 691–592.

    Google Scholar 

  18. Lim, S., Yang, S., Kim, Y., Kim, H., & Yang, S. (2015). Controller scheduling for continued SDN operation under DDoS attacks. Electronics Letters, 51(16), 1259–1261.

    Article  Google Scholar 

  19. Luo, S., Wu, J., Li, J., & Pei, B. (2015). A defense mechanism for distributed denial of service attack in software-defined networks. 2015 Ninth International Conference on Frontier of Computer Science and Technology, 325–329.

    Google Scholar 

  20. Lu, Y., & Wang, M. (2016). An easy defense mechanism against botnet-based DDoS flooding attack originated in SDN environment using sFlow. Proceedings of the 11th International Conference on Future Internet Technologies – CFI ’16.

    Google Scholar 

  21. Mowla, N. I., Doh, I., & Chae, K. (2014). Multi-defense mechanism against DDoS in SDN based CDNi. 2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 447–451.

    Google Scholar 

  22. Nayana, Y., Gopinath, J., & Girish, L. (2015). DDoS mitigation using Software Defined Network. International Journal of Engineering Trends and Technology (IJETT), 24(5), 258–264.

    Article  Google Scholar 

  23. Qin, X., Xu, T., & Wang, C. (2015). DDoS attack detection using flow entropy and clustering technique. 2015 11th International Conference on Computational Intelligence and Security, pp. 412–415.

    Google Scholar 

  24. Rodriguez, C. (2015). The expanding role of service providers in DDoS mitigation. Stratecast Perspectives and Insight for Executives (SPIE), 15(10), 1–10.

    Google Scholar 

  25. Sahay, R., Blanc, G., Zhang, Z., & Debar, H. (2015). Towards autonomic DDoS mitigation using software defined networking. Proceedings 2015 Workshop on Security of Emerging Networking Technologies.

    Google Scholar 

  26. Schneider, J., & Koch, S. (2010). HTTPreject: Handling overload situations without losing the contact to the user. European Conference on Computer Network Defense, 2010, 29–34.

    Google Scholar 

  27. Selvaraj, R., Marwala, T., & Madhav Kuthadi, V. (2016). Ant-based distributed denial of service detection technique using roaming virtual honeypots. IET Communications, 10(8), 929–935.

    Article  Google Scholar 

  28. Singh, K. J., & De, T. (2015). DDOS attack detection and mitigation technique based on Http count and verification using CAPTCHA. 2015 International Conference on Computational Intelligence and Networks, pp. 196–197.

    Google Scholar 

  29. Verizon. (2016). Verizon network infrastructure planning: SDN-NFV reference architecture. Retrieved from: http://innovation.verizon.com/

  30. Wang, H., Xu, L., & Gu, G. (2015). FloodGuard: A DoS attack prevention extension in software-defined networks. 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

    Google Scholar 

  31. Wang, X., Chen, M., & Xing, C. (2015). SDSNM: A software-defined security networking mechanism to defend against DDoS attacks. 2015 Ninth International Conference on Frontier of Computer Science and Technology, pp. 115–121.

    Google Scholar 

  32. Xiulei, W., Ming, C., Xianglin, W., & Guomin, Z. (2015). Defending DDoS attacks in software defined networking based on improved Shiryaev–Roberts detection algorithm. Journal of High Speed Networks, 21(4), 285–298.

    Article  Google Scholar 

  33. Yu, J., Fang, C., Lu, L., & Li, Z. (2010). Mitigating application layer distributed denial of service attacks via effective trust management. IET Communications, 4(16), 1952–1962.

    Article  Google Scholar 

  34. Yu, S., Tian, Y., Guo, S., & Wu, D. O. (2014). Can we beat DDoS attacks in clouds? IEEE Transactions on Parallel and Distributed Systems, 25(9), 2245–2254.

    Article  Google Scholar 

  35. Zargar, S. T., Joshi, J., & Tipper, D. (2013). A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys & Tutorials, 15(4), 2046–2069.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

D’Cruze, H., Wang, P., Sbeit, R.O., Ray, A. (2018). A Software-Defined Networking (SDN) Approach to Mitigating DDoS Attacks. In: Latifi, S. (eds) Information Technology - New Generations. Advances in Intelligent Systems and Computing, vol 558. Springer, Cham. https://doi.org/10.1007/978-3-319-54978-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54978-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54977-4

  • Online ISBN: 978-3-319-54978-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics