Advertisement

Cardiomyopathies in Women

  • Vera Regitz-ZagrosekEmail author
  • Denise Hilfiker-Kleiner
  • Tobias Pfeffer
Chapter

Abstract

Peripartum cardiomyopathy (PPCM) is a potentially threatening disease in low and middle income countries, where healthcare systems and supervision during pregnancy are not well controlled and doctors are unaware of the disease. Symptoms and signs are typical for systolic HF and may develop rapidly, leading to severe acute systolic failure, ventricular arrhythmias or sudden cardiac death. Inhibiting prolactin secretion with Bromocriptine may offer a novel specific therapeutic option. Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), and probably also non-compaction and arrhythmogenic right ventricular CM have a greater prevalence in men than in women. This chapter contains expert information on sex differences in myocardial adaptation of the human heart.

Keywords

Arrhythmias Bromocriptine Cardiac resynchronization therapy (CRT) Dilated cardiomyopathy (DCM) Gender myocardial adaptation Genetics Heart failure Heart transplantation Hypertrophic cardiomyopathy (HCM) Idiopathic dilated cardiomyopathy (IDC) LV-assisted device (LVAD) Peripartum cardiomyopathy (PPCM) Pregnancy Prolactin Systolic heart failure 

Notes

Acknowledgement

I thank Arne Kühne for excellent management of the references and Martina Rudek and Sarah Lisa Müller for editorial support. The work was supported by grants from DZHK and from EU FP 7 (RADOX and EUGenMed).

References

  1. 1.
    Sliwa K, Hilfiker-Kleiner D, Mebazaa A, et al. EURObservational Research Programme: a worldwide registry on peripartum cardiomyopathy (PPCM) in conjunction with the Heart Failure Association of the European Society of Cardiology Working Group on PPCM. Eur J Heart Fail. 2014;16(5):583–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Ware JS, Li J, Mazaika E, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med. 2016;374(3):233–41.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(24):3147–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Bauersachs J, Arrigo M, Hilfiker-Kleiner D, et al. Current management of patients with severe acute peripartum cardiomyopathy: practical guidance from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur J Heart Fail. 2016;18(9):1096–105.CrossRefPubMedGoogle Scholar
  6. 6.
    Briasoulis A, Mocanu M, Marinescu K, et al. Longitudinal systolic strain profiles and outcomes in peripartum cardiomyopathy. Echocardiography. 2016;33(9):1354–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Blauwet LA, Delgado-Montero A, Ryo K, et al. Right ventricular function in peripartum cardiomyopathy at presentation is associated with subsequent left ventricular recovery and clinical outcomes. Circ Heart Fail. 2016;9(5):e002756.CrossRefPubMedGoogle Scholar
  8. 8.
    Hilfiker-Kleiner D, Haghikia A, Nonhoff J, Bauersachs J. Peripartum cardiomyopathy: current management and future perspectives. Eur Heart J. 2015;36(18):1090–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Laliberte B, Reed BN, Ather A, et al. Safe and effective use of pharmacologic and device therapy for peripartum cardiomyopathy. Pharmacotherapy. 2016;36(9):955–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Habli M, O’Brien T, Nowack E, Khoury S, Barton JR, Sibai B. Peripartum cardiomyopathy: prognostic factors for long-term maternal outcome. Am J Obstet Gynecol. 2008;199(4):415 e1–5.CrossRefGoogle Scholar
  11. 11.
    Damp J, Givertz MM, Semigran M, et al. Relaxin-2 and soluble Flt1 levels in peripartum cardiomyopathy: results of the multicenter IPAC study. JACC Heart fail. 2016;4(5):380–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Raleigh JM, Toldo S, Das A, Abbate A, Salloum FN. Relaxin’ the heart: a novel therapeutic modality. J Cardiovasc Pharmacol Ther. 2016;21(4):353–62.CrossRefPubMedGoogle Scholar
  13. 13.
    Hilfiker-Kleiner D, Kaminski K, Podewski E, et al. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell. 2007;128(3):589–600.CrossRefPubMedGoogle Scholar
  14. 14.
    Habedank D, Kuhnle Y, Elgeti T, Dudenhausen JW, Haverkamp W, Dietz R. Recovery from peripartum cardiomyopathy after treatment with bromocriptine. Eur J Heart Fail. 2008;10(11):1149–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Sliwa K, Blauwet L, Tibazarwa K, et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation. 2010;121(13):1465–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Haghikia A, Podewski E, Berliner D, et al. Rationale and design of a randomized, controlled multicentre clinical trial to evaluate the effect of bromocriptine on left ventricular function in women with peripartum cardiomyopathy. Clin Res Cardiol. 2015;104(11):911–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sliwa K, Hilfiker-Kleiner D, Petrie MC, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. Eur J Heart Fail. 2010;12(8):767–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Sliwa K, Fett J, Elkayam U. Peripartum cardiomyopathy. Lancet. 2006;368(9536):687–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Bagger JP, Baandrup U, Rasmussen K, Moller M, Vesterlund T. Cardiomyopathy in western Denmark. Br Heart J. 1984;52(3):327–31.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gillum RF. Idiopathic cardiomyopathy in the United States, 1970-1982. Am Heart J. 1986;111(4):752–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Codd MB, Sugrue DD, Gersh BJ, Melton 3rd LJ. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation. 1989;80(3):564–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Regitz-Zagrosek V, Kararigas G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev. 2017;97(1):1–37.CrossRefPubMedGoogle Scholar
  23. 23.
    Kadkhodayan A, Lin CH, Coggan AR, et al. Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. J Nucl Cardiol. 2016. PMID: 27048307.Google Scholar
  24. 24.
    Regitz-Zagrosek V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov. 2006;5(5):425–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Regitz-Zagrosek V, Petrov G, Lehmkuhl E, et al. Heart transplantation in women with dilated cardiomyopathy. Transplantation. 2010;89(2):236–44.CrossRefPubMedGoogle Scholar
  26. 26.
    EUGenMed Cardiovascular Clinical Study Group, Regitz-Zagrosek V, Oertelt-Prigione S, et al. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J. 2016;37(1):24–34.CrossRefGoogle Scholar
  27. 27.
    Rathore SS, Wang Y, Krumholz HM. Sex-based differences in the effect of digoxin for the treatment of heart failure. N Engl J Med. 2002;347(18):1403–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329–38.CrossRefPubMedGoogle Scholar
  31. 31.
    Arshad A, Moss AJ, Foster E, et al. Cardiac resynchronization therapy is more effective in women than in men: the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) trial. J Am Coll Cardiol. 2011;57(7):813–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Zusterzeel R, Selzman KA, Sanders WE, et al. Cardiac resynchronization therapy in women: US Food and Drug Administration meta-analysis of patient-level data. JAMA Intern Med. 2014;174(8):1340–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Weymann A, Patil NP, Sabashnikov A, et al. Gender differences in continuous-flow left ventricular assist device therapy as a bridge to transplantation: a risk-adjusted comparison using a propensity score-matching analysis. Artif Organs. 2015;39(3):212–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347(18):1397–402.CrossRefPubMedGoogle Scholar
  35. 35.
    Regitz-Zagrosek V, Dworatzek E, Kintscher U, Dragun D. Sex and sex hormone-dependent cardiovascular stress responses. Hypertension. 2013;61(2):270–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Petrov G, Regitz-Zagrosek V, Lehmkuhl E, et al. Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation. 2010;122(11 Suppl):S23–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Regitz-Zagrosek V, Erdmann J, Wellnhofer E, Raible J, Fleck E. Novel mutation in the alpha-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation. 2000;102(17):E112–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Autore C, Conte MR, Piccininno M, et al. Risk associated with pregnancy in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40(10):1864–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Thaman R, Varnava A, Hamid MS, et al. Pregnancy related complications in women with hypertrophic cardiomyopathy. Heart. 2003;89(7):752–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shin J, Kim M, Lee J, et al. Pregnancy in hypertrophic cardiomyopathy with severe left ventricular outflow tract obstruction. J Cardiovasc Ultrasound. 2016;24(2):158–62.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ashikhmina E, Farber MK, Mizuguchi KA. Parturients with hypertrophic cardiomyopathy: case series and review of pregnancy outcomes and anesthetic management of labor and delivery. Int J Obstet Anesth. 2015;24(4):344–55.CrossRefPubMedGoogle Scholar
  42. 42.
    Erdmann J, Raible J, Maki-Abadi J, et al. Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2001;38(2):322–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vera Regitz-Zagrosek
    • 1
    Email author
  • Denise Hilfiker-Kleiner
    • 2
  • Tobias Pfeffer
    • 2
  1. 1.Institute of Gender in Medicine, Center for Cardiovascular Research, CharitéUniversitätsmedizin BerlinBerlinGermany
  2. 2.Center for Cardiology, Angiology and Molecular Cardiology, Medizinische Hochschule HannoverHannoverGermany

Personalised recommendations