Skip to main content

An Autonomous Companion UAV for the SpaceBot Cup Competition 2015

  • Chapter
  • First Online:
Robot Operating System (ROS)

Abstract

In this use case chapter, we summarize our experience during the development of an autonomous UAV for the German DLR Spacebot Cup robot competition. The autarkic UAV is designed as a companion robot for a ground robot supporting it with fast environment exploration and object localisation. On the basis of ROS Indigo we employed, extended and developed several ROS packages to build the intelligence of the UAV to let it fly autonomously and act meaningfully as an explorer to disclose the environment map and locate the target objects. Besides presenting our experiences and explaining our design decisions the chapter includes detailed descriptions of our hardware and software system as well as further  references that provide a foundation for developing own autonomous UAV resolving complex tasks using ROS. A special focus is given on the navigation with SLAM and visual odometry, object localisation, collision avoidance, exploration and high level planning and decision making. Extended and developed packages are available for download, see footnotes in the respective sections of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Complete task description in German at http://www.dlr.de/rd/Portaldata/28/Resources/dokumente/rr/AufgabenbeschreibungSpaceBotCup2015.pdf.

  2. 2.

    manufactured by Ascending Technologies.

  3. 3.

    http://wiki.mikrokopter.de/en/HexaKopter.

  4. 4.

    https://github.com/KumarRobotics/bluefox2.git and

    https://github.com/KumarRobotics/camera_base.git.

  5. 5.

    https://github.com/cehberlin/MikroKopterFlightController.

  6. 6.

    https://github.com/cehberlin/Flow.

  7. 7.

    https://github.com/cehberlin/px-ros-pkg.

  8. 8.

    https://github.com/DAInamite/srf_serial and https://github.com/DAInamite/mikrokopter_node.

  9. 9.

    http://wiki.ros.org/viso2.

  10. 10.

    http://wiki.ros.org/fovis_ros.

  11. 11.

    https://github.com/cehberlin/ORB_SLAM.

  12. 12.

    https://github.com/raulmur/ORB_SLAM.

  13. 13.

    https://github.com/raulmur/ORB_SLAM2.

  14. 14.

    https://github.com/DAInamite/uav_position_controller.

  15. 15.

    https://github.com/cehberlin/control_toolbox.

  16. 16.

    http://wg-perception.github.io/tabletop/index.html#tabletop.

  17. 17.

    http://wg-perception.github.io/linemod/index.html#line-mod.

  18. 18.

    http://wg-perception.github.io/tod/index.html#tod.

  19. 19.

    https://github.com/DAInamite/uav_object_localisation.

  20. 20.

    http://wiki.ros.org/rosbag.

  21. 21.

    https://github.com/nyanp/tiny-cnn.

  22. 22.

    http://wiki.ros.org/navigation.

  23. 23.

    https://github.com/DAInamite/uav_exploration.git.

  24. 24.

    https://github.com/DAInamite/rhbp.

References

  1. Kryza, L, S. Kapitola, C. Avsar, and K. Briess. 2015. Developing technologies for space on a terrestrial system: A cost effective approach for planetary robotics research. In 1st syposium on space educational acitvities, Padova, Italy.

    Google Scholar 

  2. Mur-Artal, R, J.M.M. Montiel, and J.D. Tardós. 2015. ORB-SLAM: A versatile and accurate monocular SLAM system. CoRR. arXiv:abs/1502.00956.

  3. Honegger, D., L. Meier, P. Tanskanen, and M. Pollefeys. 2013. An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications. In 2013 IEEE international conference on robotics and automation (ICRA) 1736–1741.

    Google Scholar 

  4. Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86 (11): 2278–2324.

    Article  Google Scholar 

  5. Li, G., A. Yamashita, H. Asama, and Y. Tamura. 2012. An efficient improved artificial potential field based regression search method for robot path planning. In 2012 international conference on Mechatronics and automation (ICMA), 1227–1232.

    Google Scholar 

  6. Loianno, G., Y. Mulgaonkar, C. Brunner, D. Ahuja, A. Ramanandan, M. Chari, S. Diaz, and V. Kumar. 2015. Smartphones power flying robots. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), 1256–1263.

    Google Scholar 

  7. Tomic, T., K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess, M. Suppa, and D. Burschka. 2012. Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. IEEE Robotics Automation Magazine 19 (3): 46–56.

    Article  Google Scholar 

  8. Schmid, K., P. Lutz, T. Tomić, E. Mair, and H. Hirschmüller. 2014. Autonomous vision-based micro air vehicle for indoor and outdoor navigation. Journal of Field Robotics 31 (4): 537–570.

    Article  Google Scholar 

  9. Beul, M., N. Krombach, Y. Zhong, D. Droeschel, M. Nieuwenhuisen, and S. Behnke. 2015. A high-performance MAV for autonomous navigation in complex 3d environments. In 2015 international conference on unmanned aircraft systems (ICUAS), 1241–1250. IEEE: New York.

    Google Scholar 

  10. Sunderhauf, N., P. Neubert, M. Truschzinski, D. Wunschel, J. Poschmann, S. Lange, and P. Protzel. 2014. Phobos and deimos on mars - two autonomous robots for the DLR spacebot cup. In The 12th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS’14), Montreal, Canada, The Canadian Space Agency (CSA-ASC).

    Google Scholar 

  11. Endres, F., J. Hess, J. Sturm, D. Cremers, and W. Burgard. 2014. 3-d mapping with an RGB-d camera. IEEE Transactions on Robotics 30 (1): 177–187.

    Article  Google Scholar 

  12. Labbe, M., and F. Michaud. 2014. Online global loop closure detection for large-scale multi-session graph-based SLAM. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, 2661–2666.

    Google Scholar 

  13. Engel, J., T. Schöps, and D. Cremers. 2014. LSD-SLAM: large-scale direct monocular SLAM. In Computer vision – ECCV 2014: 13th European conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part II, 834–849. Springer International Publishing, Cham.

    Google Scholar 

  14. Forster, C., M. Pizzoli, and D. Scaramuzza. 2014. SVO: Fast semi-direct monocular visual odometry. In IEEE international conference on robotics and automation (ICRA).

    Google Scholar 

  15. Engel, J., J. Sturm, and D. Cremers. 2014. Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robotics and Autonomous Systems 62 (11): 1646–1656.

    Article  Google Scholar 

  16. Izzo, D., and G. de Croon. 2012. Landing with time-to-contact and ventral optic flow estimates. Journal of Guidance, Control, and Dynamics 35 (4): 1362–1367.

    Article  Google Scholar 

  17. Deng, L. 2012. The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine 29 (6): 141–142.

    Article  MathSciNet  Google Scholar 

  18. Li, G., A. Yamashita, H. Asama, and Y. Tamura. 2012. An efficient improved artificial potential field based regression search method for robot path planning. In: 2012 international conference on Mechatronics and automation (ICMA), 1227–1232. New York: IEEE

    Google Scholar 

  19. Thrun, S., D. Fox, and W. Burgard. 2005. Probabilistic robotics. Cambridge: The MIT Press.

    Google Scholar 

  20. Hornung, A., K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. 2013. Octomap: An efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots 34 (3): 189–206.

    Article  Google Scholar 

  21. Koenig, S., and M. Likhachev. 2005. Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics 21 (3): 354–363.

    Article  Google Scholar 

  22. Du, Z., D. Qu, F. Xu, and D. Xu. 2007. A hybrid approach for mobile robot path planning in dynamic environments. In IEEE international conference on robotics and biomimetics, 2007. ROBIO 2007, 1058–1063. New York: IEEE.

    Google Scholar 

  23. Oriolo, G., M. Vendittelli, L. Freda, and G. Troso. 2004. The SRT method: Randomized strategies for exploration. In 2004 IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04, vol. 5, 4688–4694. New York: IEEE.

    Google Scholar 

  24. Yamauchi, B. 1997. A frontier-based approach for autonomous exploration. In Proceedings of the 1997 IEEE international symposium on computational intelligence in robotics and automation, 1997. CIRA’97, 146–151. New York: IEEE

    Google Scholar 

  25. Surmann, H., A. Nüchter, and J. Hertzberg. 2003. An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems 45 (3): 181–198.

    Article  Google Scholar 

  26. Tovar, B., L. Munoz-Gómez, R. Murrieta-Cid, M. Alencastre-Miranda, R. Monroy, and S. Hutchinson. 2006. Planning exploration strategies for simultaneous localization and mapping. Robotics and Autonomous Systems 54 (4): 314–331.

    Article  Google Scholar 

  27. Hrabia, C.E., N. Masuch, and S. Albayrak. 2015. A metrics framework for quantifying autonomy in complex systems. In Multiagent System Technologies: 13th German Conference, MATES 2015, Cottbus, Germany, September 28–30, 2015, Revised Selected Papers, 22–41. Springer International Publishing, Cham.

    Google Scholar 

  28. Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.Y. Ng. 2009. Ros: An open-source robot operating system. In ICRA Workshop on Open Source Software 3 (3.2): 5. Kobe.

    Google Scholar 

  29. Bohren, J., and S. Cousins. 2010. The SMACH high-level executive [ros news]. IEEE Robotics Automation Magazine 17 (4): 18–20.

    Article  Google Scholar 

  30. Goebel R.P. 2014. ROS by example: Packages and programs For advanced robot behaviors. Pi Robot Production, vol. 2, 61–88. Lulu.com.

    Google Scholar 

  31. CogniTeam Ltd. Cognitao (think as one). [Online]. Available: http://www.cogniteam.com/cognitao.html.

  32. Jung, D. 1998. An architecture for cooperation among autonomous agents. PhD thesis, University of South Australia.

    Google Scholar 

  33. Maes, P. 1989. How to do the right thing. Connection Science 1 (3): 291–323.

    Article  Google Scholar 

  34. Allgeuer, P., S. Behnke. 2013. Hierarchical and state-based architectures for robot behavior planning and control. In Proceedings of 8th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots, Atlanta, USA.

    Google Scholar 

  35. Hoffmann, J. 2002. Extending FF to numerical state variables. In Proceedings of the 15th European conference on artificial intelligence, 571–575. New York: Wiley.

    Google Scholar 

  36. Yan, Z., L. Fabresse, J. Laval, and N. Bouraqadi. 2014. Team size optimization for multi-robot exploration. In Proceedings of the 4th international conference on simulation, modeling, and programming for autonomous robots (SIMPAR 2014), Bergamo, Italy (October 2014), 438–449.

    Google Scholar 

  37. Echeverria, G., N. Lassabe, A. Degroote, and S. Lemaignan. 2011. Modular open robots simulation engine: MORSE. In Proceedings of the 2011 IEEE international conference on robotics and automation.

    Google Scholar 

Download references

Acknowledgements

The presented work was partially funded by the German Aerospace Center (DLR) with funds from the Federal Ministry of Economics and Technology (BMWi) on the basis of a decision of the German Bundestag (Grant No: 50RA1420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher-Eyk Hrabia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hrabia, CE. et al. (2017). An Autonomous Companion UAV for the SpaceBot Cup Competition 2015. In: Koubaa, A. (eds) Robot Operating System (ROS). Studies in Computational Intelligence, vol 707. Springer, Cham. https://doi.org/10.1007/978-3-319-54927-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54927-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54926-2

  • Online ISBN: 978-3-319-54927-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics