Skip to main content

Abstract

The vast majority of current ideas and practices for the treatment of cerebral paresis are rooted in stroke research. Consequently, the consensus is that 95% of patients reach their optimum overall neurological function by 3 months from an incident. It is also believed that motor recovery reaches a plateau 3–6 months after the incident, and additional gains with current standard therapies are relatively minor. This mindset has now been greatly challenged by emerging neuromodulatory approaches, in particular by repetitive (rTMS). Three potential roles have been described for rTMS in rehabilitation: (1) inhibiting, i.e., downregulating, the nonlesioned side (low frequency, 1 Hz rTMS), (2) exciting the lesioned side (high frequency, ≥10 Hz rTMS), and (3) combining both approaches to reach the optimal excitation-inhibition balance in motor systems for relearning lost motor skills.

All neuromodulatory approaches without exception require integrated occupational therapy or physiotherapy for motor relearning; as such, no current standardized therapy protocol shows proven superiority with respect to the others. Despite the enthusiasm for neuromodulatory approaches and several promising early results, rTMS neuromodulation is still in its translational stage of moving from research to clinical practice. Brain lesions leading to paresis can be extremely variable by location, size, and the amount of completely destroyed vs. damaged but still viable tissue in the vicinity of the lesion. Motor lesions can also cause symptoms and signs from remote parts of the interconnected motor network, leading to diaschisis.

Most importantly, the majority of studies utilizing transcranial neuromodulatory approaches face methodological uncertainties; the exact location of stimulus delivery is often not known, the intensity or “dose” of stimulus is not uniform across the subjects, the patient sample sizes are small, and combining the study results is impossible because of methodological differences—there are simply too many unknowns. These problems could potentially be solved by utilizing navigated rTMS (nrTMS) to minimize the inaccuracies of stimulus delivery, by conducting multicenter projects concentrated on stratified patient groups, and by securing a priori agreements on test protocols to gain large enough comparable datasets. The ultimate goal for adjuvant therapies such as nrTMS is to provide a more receptive neuronal environment through which behavioral therapies may be imparted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WC. Metaplasticity: tuning synapses and networks for plasticity. Nat Rev Neurosci. 2008;9(5):387.

    Article  CAS  PubMed  Google Scholar 

  • Ackerley SJ, Stinear CM, Barber PA, Byblow WD. Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. Clin Neurophysiol. 2014;125(7):1451–8.

    Article  PubMed  Google Scholar 

  • Bashir S, Edwards D, Pascual-Leone A. Neuronavigation increases the physiologic and behavioral effects of low-frequency rTMS of primary motor cortex in healthy subjects. Brain Topogr. 2011;24(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  • Bashir S, Vernet M, Najib U, Perez J, Alonso-Alonso M, Knobel M, Yoo WK, Edwards D, Pascual-Leone A. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke. Restor Neurol Neurosci. 2016;34(4):677–89.

    PubMed  Google Scholar 

  • Bolognini N, Pascual-Leone A, Fregni F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil. 2009;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boudrias MH, McPherson RL, Frost SB, Cheney PD. Output properties and organization of the forelimb representation of motor areas on the lateral aspect of the hemisphere in rhesus macaques. Cereb Cortex. 2010;20(1):169–86.

    Article  PubMed  Google Scholar 

  • Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG. Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr clin neurophysiol. 1992;85:9–16.

    Article  CAS  PubMed  Google Scholar 

  • Broca P. Mémoires d'anthropologie. Paris: Reinwald; 1888.

    Google Scholar 

  • Brown P. Pathophysiology of spasticity. J Neurol Neurosurg Psychiatry. 1994;57(7):773–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carey LM, Abbott DF, Puce A, Jackson GD, Syngeniotis A, Donnan GA. Reemergence of activation with poststroke somatosensory recovery: a serial fMRI case study. Neurology. 2002;59(5):749–52.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–403.

    Article  CAS  PubMed  Google Scholar 

  • Cortes M, Thickbroom GW, Valls-Sole J, Pascual-Leone A, Edwards DJ. Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clin Neurophysiol. 2011;122:2254–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil. 2012;26(4):291–313.

    Article  PubMed  Google Scholar 

  • Cunningham DA, Machado A, Yue GH, Carey JR, Plow EB. Functional somatotopy revealed across multiple cortical regions using a model of complex motor task. Brain Res. 2013;1531:25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cykowski MD, Coulon O, Kochunov PV, Amunts K, Lancaster JL, Laird AR, Glahn DC, Fox PT. The central sulcus: an observer-independent characterization of sulcal landmarks and depth asymmetry. Cereb Cortex. 2008;18:1999–2009.

    Article  PubMed  Google Scholar 

  • Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989;412:449–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci. 1991;11(3):667–89.

    CAS  PubMed  Google Scholar 

  • Feldman DE. The spike-timing dependence of plasticity. Neuron. 2012;75:556–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453:525–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman EA1, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG. Reorganization of the human ipsilesional premotor cortex after stroke. Brain. 2004;127(Pt4):747–58.

    Google Scholar 

  • Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol. 2003;89(6):3205–14.

    Article  CAS  PubMed  Google Scholar 

  • Gastaut H. Electrocorticographic study of the reactivity of rolandic rhythm. Rev Neurol (Paris). 1952;87(2):176–82.

    CAS  Google Scholar 

  • Grefkes C, Ward NS. Cortical reorganization after stroke: how much and how functional? Neuroscientist. 2014;20(1):56–70.

    Article  PubMed  Google Scholar 

  • Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR. Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage. 2008;41(4):1382–94.

    Article  PubMed  Google Scholar 

  • Harvey R, Roth H, Tappan, Kermen R, Laine J, Stinear J, Rogers L. The Contrastim Stroke Study: Improving Hand and Arm Function After Stroke With Combined Non-Invasive Brain Stimulation and Task-Oriented Therapy - A Pilot Study. Stroke. 2014;45:A152.

    Google Scholar 

  • Hausmann A, Weis C, Marksteiner J, Hinterhuber H, Humpel C. Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res Mol Brain Res. 2000;76(2):355–62.

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO. Organization of behavior. New York: John Wiley & Sons, Inc.; 1949.

    Google Scholar 

  • Hsu WY, Cheng CH, Liao KK, Lee IH, Lin YY. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis. Stroke. 2012;43(7):1849–57.

    Article  PubMed  Google Scholar 

  • Hummel FC, Cohen LG. Non-invasive brain stimulation. Lancet Neurol. 2006;5(8):708–12.

    Article  PubMed  Google Scholar 

  • Ilmoniemi RJ, Ruohonen J, Karhu J. Transcranial magnetic stimulation–a new tool for functional imaging of the brain. Crit Rev Biomed Eng. 1999;27(3–5):241–84.

    Google Scholar 

  • Ilmoniemi RJ, Kicić D. Methodology for combined TMS and EEG. Brain Topogr. 2010;22(4):233–48.

    Article  PubMed  Google Scholar 

  • Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Näätänen R, Katila T. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport. 1997;8(16):3537–40.

    Article  CAS  PubMed  Google Scholar 

  • Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002;99(22):14518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julkunen P, Säisänen L, Danner N, Niskanen E, Hukkanen T, Mervaala E, Könönen M. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage. 2009;44(3):790–5.

    Article  PubMed  Google Scholar 

  • Julkunen P, Säisänen L, Danner N, Awiszus F, Könönen M. Within-subject effect of coil-to-cortex distance on cortical electric field threshold and motor evoked potentials in transcranial magnetic stimulation. J Neurosci Methods. 2012;206(2):158–64.

    Article  PubMed  Google Scholar 

  • Julkunen P, Määttä S, Säisänen L, Kallioniemi E, Könönen M, Jäkälä P, Vanninen R, Vaalto S. Functional and structural cortical characteristics after restricted focal motor cortical infarction evaluated at chronic stage – indications from a preliminary study. Clin Neurophysiol. 2016;127(8):2775–84.

    Article  PubMed  Google Scholar 

  • Kallioniemi E, Könönen M, Julkunen P. Repeatability of functional anisotropy in navigated transcranial magnetic stimulation—coil-orientation versus response. Neuroreport. 2015a;26(9):515–21.

    Article  PubMed  Google Scholar 

  • Kallioniemi E, Könönen M, Säisänen L, Gröhn H, Julkunen P. Functional neuronal anisotropy assessed with neuronavigated transcranial magnetic stimulation. J Neurosci Methods. 2015b;256:82–90.

    Article  PubMed  Google Scholar 

  • Karhu J, Hari R, Paetau R, Kajola M, Mervaala E. Cortical reactivity in progressive myoclonus epilepsy. Electroencephalogr Clin Neurophysiol. 1994;90(2):93–102.

    Article  CAS  PubMed  Google Scholar 

  • Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–39.

    Article  PubMed  Google Scholar 

  • Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, Ringel F. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg. 2012;116(5):994–1001.

    Article  PubMed  Google Scholar 

  • Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.

    Article  PubMed  Google Scholar 

  • Lang CE, Macdonald JR, Reisman DS, Boyd L, Jacobson Kimberley T, Schindler-Ivens SM, Hornby TG, Ross SA, Scheets PL. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • di Lazzaro V, Ziemann U, Lemon RN. State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul. 2008;1:345–62.

    Article  PubMed  Google Scholar 

  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg PG, Gäverth J, Fagergren A, Fransson P, Forssberg H, Borg J. Cortical activity in relation to velocity dependent movement resistance in the flexor muscles of the hand after stroke. Neurorehabil Neural Repair. 2009;23(8):800–10.

    Article  PubMed  Google Scholar 

  • Lindenberg R, Renga V, Zhu LL, Betzler F, Alsop D, Schlaug G. Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology. 2010;74(4):280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Rouiller EM. Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Exp Brain Res. 1999;128(1–2):149–59.

    Article  CAS  PubMed  Google Scholar 

  • McNeal DW, Darling WG, Ge J, Stilwell-Morecraft KS, Solon KM, Hynes SM, Pizzimenti MA, Rotella DL, Vanadurongvan T, Morecraft RJ. Selective long-term reorganization of the corticospinal projection from the supplementary motor cortex following recovery from lateral motor cortex injury. J Comp Neurol. 2010;518(5):586–621.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills KR, Boniface SJ, Schubert M. Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol. 1992;85:17–21.

    Article  CAS  PubMed  Google Scholar 

  • Moliadze V, Zhao Y, Eysel U, Funke K. Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol. 2003;553(Pt 2):665–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Dahlhaus F, Ziemann U. Metaplasticity in human cortex. Neuroscientist. 2015;21(2):185–202.

    Article  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400–9.

    Article  PubMed  Google Scholar 

  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272:1791–4.

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117(Pt 4):847–58.

    Article  PubMed  Google Scholar 

  • Picht T, Kombos T, Vajkoczy P, Süss O. TMS in neurosurgery: one year experience with navigated TMS for preoperative analysis. Clin Neurophysiol. 2009a;120:e18.

    Article  Google Scholar 

  • Picht T, Mularski S, Kuehn B, Vajkoczy P, Kombos T, Suess O. Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery. 2009b;65(6 Suppl):93–8.

    PubMed  Google Scholar 

  • Pollock A, Baer G, Campbell P, Choo PL, Forster A, Morris J, Pomeroy VM, Langhorne P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev. 2014;22(4). https://www.ncbi.nlm.nih.gov/pubmed/24756870.

  • Ranck JB Jr. Which elements are excited in electrical stimulations of mammalian central nervous system: a review. Brain Res. 1975;98:417–40.

    Article  PubMed  Google Scholar 

  • Ravazzani P, Ruohonen J, Grandori F, Tognola G. Magnetic stimulation of the nervous system: induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Ann Biomed Eng. 1996;24:606–16.

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in Healthy subjects. J Physiol. 2010;588(Pt 13):2291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng. 1994;22(3–4):253–305.

    CAS  PubMed  Google Scholar 

  • Ruohonen J, Ilmoniemi RJ. Modeling of the stimulating field generation in TMS. Electroencephalogr Clin Neurophysiol Suppl. 1999;51:30–40.

    Google Scholar 

  • Ruohonen J, Ilmoniemi RJ. Basic physics and design of TMS devices and coils. In: Hallett M, Chokroverty S, editors. Magnetic stimulation in clinical neurophysiology. Boston: Butterworth; 2005. p. 17–30.

    Chapter  Google Scholar 

  • Ruohonen J, Karhu J. tDCS possibly stimulates glial cells. Clin Neurophysiol. 2012;123(10):2006–9.

    Article  PubMed  Google Scholar 

  • Rushton WA. Effect upon the threshold for nervous excitation of the length of nerve exposed and the angle between current and nerve. J Physiol. 1927;63:357–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA. An initial transient-state and reliable measures of corticospinal excitability in TMS studies. Clin Neurophysiol. 2009;120:987–93.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Fleischmann R, Bathe-Peters R, Irlbacher K, Brandt SA. Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study. PLoS One. 2013;8(2):e57425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulga A, Lioumis P, Zubareva A, Brandstack N, Kuusela L, Kirveskari E, et al. Long-term paired associative stimulation can restore voluntary control over paralyzed muscles in incomplete chronic spinal cord injury patients. Spinal Cord Ser Cases. 2016a;2:160–16. doi:10.1038/scsandc.2016.16.

    Google Scholar 

  • Shulga A, Zubareva A, Lioumis P, Mäkelä JP. Paired associative stimulation with high-frequency peripheral component leads to enhancement of corticospinal transmission at wide range of interstimulus intervals. Front Hum Neurosci. 2016b;10:470.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sjöström PJ, Turrigiano GG, Nelson SB. Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001;32:1149–64.

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–84.

    Article  PubMed  Google Scholar 

  • Steinmetz H, Fürst G, Freund HJ. Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates. AJNR Am J Neuroradiol. 1990;11:1123–30.

    CAS  PubMed  Google Scholar 

  • Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper-limb therapy in chronic stroke. Brain. 2008;131(Pt 5):1381–90.

    Article  PubMed  Google Scholar 

  • Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, Ziemann U, Rothwell JC. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Brain Stimul. 2016;9(3):323–35.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Vajkoczy P, Picht T. Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors. Neurosurg Focus. 2013;34(4):E3.

    Article  PubMed  Google Scholar 

  • Tanksley H, Dunning K, Jun Y, Dylan E, Belagaje S, Boyne P, Laine J, Karhu J, Kissela B, Page S. Neuronavigation enhances detection of motor evoked potentials in chronic, hemiparetic stroke clinical neurophysiology. Clin. Neurophysiol. 2017. Submitted.

    Google Scholar 

  • Teitti S, Määttä S, Säisänen L, Könönen M, Vanninen R, Hannula H, Mervaala E, Karhu J. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles. Neuroimage. 2008;40:1243–50.

    Article  CAS  PubMed  Google Scholar 

  • Thickbroom GW. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res. 2007;180(4):583–93.

    Article  PubMed  Google Scholar 

  • Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL. Motor outcome after subcortical stroke correlates with the degree of cortical reorganization. Clin Neurophysiol. 2004;115(9):2144–50.

    Article  PubMed  Google Scholar 

  • Vaalto S, Säisänen L, Könönen M, Julkunen P, Hukkanen T, Määttä S, Karhu J. Corticospinal output and cortical excitation-inhibition balance in distal hand muscle representations in nonprimary motor area. Hum Brain Mapp. 2011;32(10):1692–703.

    Article  PubMed  Google Scholar 

  • Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol. 2004;61(12):1844–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ, Greenwood RJ, Rothwell JC. The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci. 2007;25(6):1865–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Winstein CJ, Wolf SL, Dromerick AW, Lane CJ, Nelsen MA, Lewthwaite R, Cen SY, Azen SP. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. Interdisciplinary comprehensive arm rehabilitation evaluation (ICARE) investigative team. JAMA. 2016;315(6):571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenberg GF, Chen R, Ishii K, Bushara KO, Eckloff S, Croarkin E, Taub E, Gerber LH, Hallett M, Cohen LG. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair. 2003;17(1):48–57. Erratum in: Neurorehabil Neural Repair. 2003;17(3):197

    Article  PubMed  Google Scholar 

  • Wolf SL. Believing in brain and brawn. J Neurol Phys Ther. 2006;30(3):117. discussion 118–9

    Article  PubMed  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 1997;120:141–57.

    Article  PubMed  Google Scholar 

  • Zeiler SR, Gibson EM, Hoesch RE, Li MY, Worley PF, O'Brien RJ, Krakauer JW. Medial premotor cortex shows a reduction in inhibitory markers and mediates recovery in a mouse model of focal stroke. Stroke. 2013;44(2):483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemke AC, Heagerty PJ, Lee C, Cramer SC. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke. 2003;34(5):e23–8.

    Article  PubMed  Google Scholar 

  • Zinger N, Harel R, Gabler S, Israel Z, Prut Y. Functional organization of information flow in the corticospinal pathway. J Neurosci. 2013;33(3):1190–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Karhu M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Karhu, J., Julkunen, P. (2017). Treatment of Paresis. In: M. Krieg, S. (eds) Navigated Transcranial Magnetic Stimulation in Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-54918-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54918-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54917-0

  • Online ISBN: 978-3-319-54918-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics