Skip to main content

Photomovement in Euglena

  • Chapter
  • First Online:
Euglena: Biochemistry, Cell and Molecular Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 979))

Abstract

Motile microorganisms such as the green Euglena gracilis use a number of external stimuli to orient in their environment. They respond to light with photophobic responses, photokinesis and phototaxis, all of which can result in accumulations of the organisms in suitable habitats. The light responses operate synergistically with gravitaxis, aerotaxis and other responses. Originally the microscopically obvious stigma was thought to be the photoreceptor, but later the paraxonemal body (PAB, paraflagellar body) has been identified as the light responsive organelle, located in the trailing flagellum inside the reservoir. The stigma can aid in light direction perception by shading the PAB periodically when the cell rotates helically in lateral light, but stigmaless mutants can also orient with respect to the light direction, and negative phototaxis does not need the presence of the stigma. The PAB is composed of dichroically oriented chromoproteins which is reflected in a pronounced polarotaxis in polarized light. There was a long debate about the potential photoreceptor molecule in Euglena, including carotenoids, flavins and rhodopsins. This discussion was terminated by the unambiguous proof that the photoreceptor is a 400 kDa photoactivated adenylyl cyclase (PAC) which consists of two α- and two β-subunits each. Each subunit possesses two BLUF (Blue Light receptor Using FAD) domains binding FAD, which harvest the light energy, and two adenylyl cyclases, which produce cAMP from ATP. The cAMP has been found to activate one of the five protein kinase s found in Euglena (PK.4). This enzyme in turn is thought to phosphorylate proteins inside the flagellum which result in a change in the flagellar beating pattern and thus a course correction of the cell. The involvements of PAC and protein kinase have been confirmed by RNA interference (RNAi). PAC is responsible for step-up photophobic responses as well as positive and negative phototaxis, but not for the step-down photophobic response, even though the action spectrum of this resembles those for the other two responses. Analysis of several colorless Euglena mutants and the closely related Euglena longa (formerly Astasia longa) confirms the results. Photokinesis shows a completely different action spectrum. Some other Euglena species, such as E. sanguinea and the gliding E. mutabilis, have been investigated, again showing totally different action spectra for phototaxis and photokinesis as well as step-up and step-down photophobic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed H, Häder D-P (2011) Monitoring of waste water samples using the ECOTOX biosystem and the flagellate alga Euglena gracilis. Water Air Soil Pollut 216(1–4):547–560

    Article  CAS  Google Scholar 

  • de Araujo FFT, Pires MA, Frankel RB, Bicudo CEM (1986) Magnetite and magnetotaxis in algae. Biophys J 50:375–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Ascoli C (1975) New techniques in photomotion methodology. In: Colombetti G (ed) Biophysics of photoreceptors and photobehaviour of microorganisms. Lito Felici, Pisa, pp 109–120

    Google Scholar 

  • Azizullah A, Murad W, Adnan M, Ullah W, Häder D-P (2013) Gravitactic orientation of Euglena gracilis—a sensitive endpoint for ecotoxicological assessment of water pollutants. Front Environ Sci 1:4

    Article  Google Scholar 

  • Azizullah A, Jamil M, Richter P, Häder D-P (2014) Fast bioassessment of wastewater and surface water quality using freshwater flagellate Euglena gracilis—a case study from Pakistan. J Appl Phycol 26(1):421–431

    Article  CAS  Google Scholar 

  • Banchetti R, Rosati G, Verni F (1980) Cytochemical analysis of the photoreceptor in Euglena gracilis Klebs (Flagellata Euglenoidina). Monit Zool Ital (NS) 14:165–171

    Google Scholar 

  • Barghigiani C, Colombetti G, Lenci F, Banchetti R, Bizzaro MP (1979a) Photosensory transduction in Euglena gracilis: effect of some metabolic drugs on the photophobic response. Arch Microbiol 120:239–245

    Article  CAS  Google Scholar 

  • Barghigiani C, Colombetti G, Tranchini B, Lenci F (1979b) Photobehavior of Euglena gracilis: action spectrum for the stepdown photophobic response of individual cells. Photochem Photobiol 29:1015–1019

    Article  Google Scholar 

  • Barsanti L, Passarelli V, Lenzi P, Gualtieri P (1992) Elimination of photoreceptor (paraflagellar swelling) and photoreception in Euglena gracilis by means of the carotenoid biosynthesis inhibitor nicotine. J Photochem Photobiol B Biol 13:135–144

    Article  CAS  Google Scholar 

  • Barsanti L, Passarelli V, Lenci P, Walne PL, Dunlap JR, Gualtieri P (1993a) Effects of hydroxylamine, digitonin and triton X-100 on photoreceptor (paraflagellar swelling) and photoreception of Euglena gracilis. Vis Res 33:2043–2050

    Article  CAS  PubMed  Google Scholar 

  • Barsanti L, Evangelista V, Passarelli V, Frassanito AM, Gualtieri P (2012) Fundamental questions and concepts about photoreception and the case of Euglena gracilis. Integr Biol 4(1):22–36

    Article  CAS  Google Scholar 

  • Batra PP, Tollin G (1964) Phototaxis in Euglena. I. Isolation of the eye-spot granules and identification of the eye-spot pigments. Biochim Biophys Acta 79:371–378

    Article  CAS  PubMed  Google Scholar 

  • Bendix SW (1960) Pigments in phototaxis. In: Allen MB (ed) Comparative Biochemistry of Photoreactive. Systems Academic Press, New York, pp 107–127

    Google Scholar 

  • Benedetti PA, Checcucci A (1975) Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis. Plant Sci Lett 4:47–51

    Article  Google Scholar 

  • Benedetti PA, Lenci F (1977) In vivo microspectrofluorometry of photoreceptor pigments in Euglena gracilis. Photochem Photobiol 26:315–318

    Article  CAS  Google Scholar 

  • Benedetti PA, Bianchini G, Checcucci A, Ferrara R, Grassi S (1976) Spectroscopic properties and related functions of the stigma measured in living cells of Euglena gracilis. Arch Microbiol 111:73–76

    Article  CAS  PubMed  Google Scholar 

  • Bensasson RW (1975) Spectroscopic and biological properties of carotenoids. In: Colombetti G (ed) Biophysics of Photoreceptors and Photobehaviour of Microorganisms. Lito Felici, Pisa, pp 146–163

    Google Scholar 

  • Bouck GB (2012) Flagella and the cell surface. Physiology 3:29

    Google Scholar 

  • Bound KE, Tollin G (1967) Phototactic response of Euglena gracilis to polarized light. Nature 216:1042–1044

    Article  Google Scholar 

  • Bovee EC, Jahn TL (1972) A theory of piezoelectric activity and ion movements in the relation of flagellar structures and their movements to the phototaxis of Euglena. J Theor Biol 35:259–276

    Article  CAS  PubMed  Google Scholar 

  • Brodhun B, Häder D-P (1990) Photoreceptor proteins and pigments in the paraflagellar body of the flagellate Euglena gracilis. Photochem Photobiol 52:865–871

    Article  CAS  Google Scholar 

  • Brodhun B, Häder D-P (1993) UV-induced damage of photoreceptor proteins in the paraflagellar body of Euglena gracilis. Photochem Photobiol 58:270–274

    Article  CAS  Google Scholar 

  • Brodhun B, Häder D-P (1995a) A novel procedure to isolate the chromoproteins in the paraflagellar body of the flagellate Euglena gracilis. J Photochem Photobiol B Biol 28:39–45

    Article  CAS  Google Scholar 

  • Brodhun B, Häder D-P (1995b) UV-induced damage of photoreceptor pigments and proteins in the paraflagellar body of the flagellate Euglena gracilis. Proceedings of the first European symposium on the effects of environmental UV-B radiation on health and ecosystems, EUR, vol 15607, pp 33–332

    Google Scholar 

  • Brodhun B, Neumann R, Hertel R, Häder D-P (1994) Riboflavin-binding sites in the flagella of Euglena gracilis and Astasia longa. J Photochem Photobiol B Biol 23:135–139

    Article  CAS  Google Scholar 

  • Bruce VG (1973) The role of the clock in controlling phototactic rhythms. In: Pérez-Miravete A (ed) Behaviour of Microorganisms. Plenum Press, New York, pp 257–266

    Chapter  Google Scholar 

  • Bruce VG, Pittendrigh C (1956) Temperature independence in a unicellular clock. Proc Natl Acad Sci U S A 42:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce VG, Pittendrigh CS (1958) Resetting the Euglena clock with a single light stimulus. Am Nat 92:295–306

    Article  Google Scholar 

  • Buder J (1919) Zur Kenntnis der phototaktischen Richtungsbewegungen. Jahrb Wiss Bot 58:105–220

    Google Scholar 

  • Buetow DE (1968a) The Biology of Euglena. Academic Press, New York

    Google Scholar 

  • Buetow DE (1968b) Morphology and ultrastructure of Euglena. In: Buetow DE (ed) The Biology of Euglena. Academic Press, New York, pp 109–184

    Google Scholar 

  • Bünning E (1973) The Physiological Clock, 3rd edn. English Univ. Press, London

    Google Scholar 

  • Capaldo CT, Farkas AE, Nusrat A (2014) Epithelial adhesive junctions. F1000prime reports 6

    Google Scholar 

  • Carre IA, Laval-Martin DL, Edmunds LN Jr (1989) Circadian changes in cyclic AMP levels in synchronously dividing and stationary-phase cultures of the achlorophyllous ZC mutant of Euglena gracilis. J Cell Sci 94:267–272

    CAS  Google Scholar 

  • Checcucci A, Colombetti G, del Carratore G, Ferrara R, Lenci F (1974) Red light induced accumulation of Euglena gracilis. Photochem Photobiol 19:223–226

    Article  CAS  Google Scholar 

  • Checcucci A, Favati L, Grassi S, Piaggesi T (1975) The measurement of phototactic activity in Euglena gracilis Klebs. Monit Zool Ital 9:83–98

    Google Scholar 

  • Checcucci A, Colombetti G, Ferrara R, Lenci F (1976) Action spectra for photoaccumulation of green and colorless Euglena: evidence for identification of receptor pigments. Photochem Photobiol 23:51–54

    Article  CAS  PubMed  Google Scholar 

  • Clayton R (1959) Phototaxis of purple bacteria. Handbuch der Pflanzenphysiologie 17/1:371–387

    Google Scholar 

  • Clayton RK (1964) Phototaxis in microorganisms. In: Giese AC (ed) Photophysiology, vol 2. Academic Press, New York, pp 51–77

    Chapter  Google Scholar 

  • Colombetti G, Diehn B (1978) Chemosensory responses toward oxygen in Euglena gracilis. J Protozool 25:211–217

    Article  CAS  Google Scholar 

  • Colombetti G, Häder D-P, Lenci F, Quaglia M (1982) Phototaxis in Euglena gracilis: effect of sodium azide and triphenylmethyl phosphonium ion on the photosensory transduction chain. Curr Microbiol 7:281–284

    Article  CAS  Google Scholar 

  • Creutz C, Diehn B (1976) Motor responses to polarized light and gravity sensing in Euglena gracilis. J Protozool 23:552–556

    Article  Google Scholar 

  • Cypionka H (2010) Eukaryotische Mikroorganismen. Grundlagen der Mikrobiologie 47–60

    Google Scholar 

  • Daiker V, Häder D-P, R. RP, Lebert M (2011) The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis. Planta 233:1055–1062.

    Google Scholar 

  • Diehn B (1969a) Action spectra of the phototactic responses in Euglena. Biochim Biophys Acta 177:136–143

    Article  CAS  PubMed  Google Scholar 

  • Diehn B (1969b) Phototactic responses of Euglena to single and repetitive pulses of actinic light: orientation time and mechanism. Exp Cell Res 56:375–381

    Article  CAS  PubMed  Google Scholar 

  • Diehn B (1969c) Two perpendicularly oriented pigment systems involved in phototaxis of Euglena. Nature 122:366–367

    Article  Google Scholar 

  • Diehn B (1973) Phototaxis in Euglena. 1. Physiological basis of photoreception and tactic orientation. In: Pérez-Miravete A (ed) Behaviour of Microorganisms. Plenum Press, New York, pp 83–90

    Chapter  Google Scholar 

  • Diehn B, Tollin G (1966) Phototaxis in Euglena. II. Physical factors determining the rate of phototactic response. Photochem Photobiol 5:523–557

    Article  CAS  Google Scholar 

  • Diehn B, Tollin G (1967) Phototaxis in Euglena. IV. Effect of inhibitiors of oxidative and photophosphorylation on the rate of phototaxis. Arch Biochem Biophys 121:169–177

    Article  CAS  PubMed  Google Scholar 

  • Diehn B, Fonseca JR, Jahn TR (1975) High speed cinemicrography of the direct photophobic response of Euglena and the mechanism of negative phototaxis. J Protozool 22:492–494

    Article  Google Scholar 

  • Diskus A (1955) Färbestudien an den Schleimkörperchen und Schleimausscheidungen einiger Euglenen. Protoplasma 45:460–477

    Article  Google Scholar 

  • Dodge JD (1969) A review of the fine structure of algal eyespots. Brit Phycol J 4:199–210

    Google Scholar 

  • Doughty MJ (1991) A kinetic analysis of the step-up photophobic response of the flagellated alga Euglena gracilis in culture medium. J Photochem Photobiol B Biol 9:75–85

    Article  Google Scholar 

  • Doughty MJ, Diehn B (1979) Photosensory transduction in the flagellated alga, Euglena gracilis. I. Action of divalent cations Ca2+ antagonists and Ca2+ ionophore on motility and photobehavior. Biochim Biophys Acta 588:148–168

    Article  CAS  PubMed  Google Scholar 

  • Doughty MJ, Diehn B (1982) Photosensory transduction in the flagellated alga, Euglena gracilis. III. Induction of Ca2+-dependent responses by monovalent cation ionophores. Biochim Biophys Acta 682:32–43

    Article  CAS  Google Scholar 

  • Doughty MJ, Diehn B (1983) Photosensory transduction in the flagellated alga, Euglena gracilis. IV. Long term effects of ions and pH on the expression of step-down photobehaviour. Arch Microbiol 134:204–207

    Article  CAS  Google Scholar 

  • Doughty MJ, Diehn B (1984) Anion sensitivity of motility and step-down photophobic responses of Euglena gracilis. Arch Microbiol 138:329–332

    Article  CAS  Google Scholar 

  • Edmunds LN Jr (1984) Physiology of circadian rhythms in microorganisms. In: Rose AH, Tempest DW (eds) Advances in Microbial Physiology, vol 25. Academic Press, London, pp 61–148

    Google Scholar 

  • Engelmann TW (1883) Bakterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht- und Farbensinnes. Pflugers Arch 30:95–124

    Article  Google Scholar 

  • Evangelista V, Passarelli V, Barsanti L, Gualtieri P (2003) Fluorescence behavior of Euglena photoreceptor. Photochem Photobiol 78(1):93–97

    Article  CAS  PubMed  Google Scholar 

  • Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinleib ME (1975) Phototactic response of Chlamydomonas to flashes of light. I. Response of cell population. Photochem Photobiol 21:351–354

    Article  CAS  PubMed  Google Scholar 

  • Feinleib ME, Curry GM (1967) Methods for measuring phototaxis of cell populations and individual cells. Physiol Plant 20:1083–1095

    Article  Google Scholar 

  • Feinleib MEH, Curry GM (1971) The relationship between stimulus intensity and oriented phototactic response (topotaxis) in Chlamydomonas. Physiol Plant 25:346–352

    Article  Google Scholar 

  • Feldman JF, Bruce VG (1972) Circadian rhythm changes in autotrophic Euglena induced by organic carbon sources. J Protozool 19:370–373

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T (2013) Ecology of Protozoa: The Biology of Free-living Phagotropic Protists. Springer-Verlag, Berlin

    Google Scholar 

  • Ferrara R, Banchetti R (1976) Effect of streptomycin on the structure and function of the photoreceptor apparatus of Euglena gracilis. J Exp Zool 198:393–402

    Article  CAS  PubMed  Google Scholar 

  • Fong F, Schiff JA (1978) Blue-light absorbance changes and phototaxis in Euglena. Plant Physiol 61(Suppl):74

    Google Scholar 

  • Fong F, Schiff JA (1979) Blue-light-inducted absorbance changes associated with carotenoids in Euglena. Planta 146:119–127

    Article  CAS  PubMed  Google Scholar 

  • Forreiter C, Wagner G (2012) Photomovement versus photoadaptation. Progr Bot Genet Physiol System Ecol 64:258

    Google Scholar 

  • Foster KW (2001) Action spectroscopy of photomovement. In: Häder D-P, Lebert M (eds) Photomovement, vol 1. Elsevier, Amsterdam, pp 51–115

    Chapter  Google Scholar 

  • Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Rev 44:572–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • France RH (1908) Experimentelle Untersuchungen über Reizbewegungen und Lichtsinnesorgane der Algen. Ztschrift Ausbau Entwicklungslehre 2:29–43

    Google Scholar 

  • France RH (1909) Untersuchungen über die Sinnesorganfunktion der Augenflecke bei Algen. Arch Hydrobiol 4:37–48

    Google Scholar 

  • Frey-Wyssling A, Mühlethaler K (1960) Über den Feinbau der Euglena-Zelle. Schweiz Z Hydrol 22:122–130

    Google Scholar 

  • Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642

    Article  CAS  PubMed  Google Scholar 

  • Froehlich O, Diehn B (1974) Photoeffects in a flavin-containing lipid bilayer membrane and implications for algal phototaxis. Nature 248:802–804

    Article  CAS  PubMed  Google Scholar 

  • Fujiyoshi S, Hirano M, Matsushita M, Iseki M, Watanabe M (2011) Structural change of a cofactor binding site of flavoprotein detected by single-protein fluorescence spectroscopy at 1.5 K. Phys Rev Lett 106(7):078101

    Article  PubMed  CAS  Google Scholar 

  • Galland P, Senger H (1988a) The role of flavins as photoreceptors. J Photochem Photobiol B Biol 1:277–294

    Article  CAS  Google Scholar 

  • Galland P, Senger H (1988b) The role of pterins in the photoreception and metabolism of plants. Photochem Photobiol 48:811–820

    Article  CAS  Google Scholar 

  • Galland P, Keiner P, Dörnemann D, Senger H, Brodhun B, Häder D-P (1990) Pterin- and flavin-like fluorescence associated with isolated flagella of Euglena gracilis. Photochem Photobiol 51:675–680

    CAS  Google Scholar 

  • Gerber S, Häder D-P (1993) Effects of solar irradiation on motility and pigmentation of three species of phytoplankton. Environ Exp Bot 33:515–521

    Article  Google Scholar 

  • Gerber S, Häder D-P (1994) Effects of enhanced UV-B irradiation on the red coloured freshwater flagellate Euglena sanguinea. FEMS Microbiol Ecol 13:177–184

    Article  CAS  Google Scholar 

  • Gerber S, Häder D-P (1995) Effects of artificial UV-B and simulated solar radiation on the flagellate Euglena gracilis: physiological, spectroscopical and biochemical investigations. Acta Protozool 34:13–20

    CAS  Google Scholar 

  • Gerber S, Biggs A, Häder D-P (1996) A polychromatic action spectrum for the inhibition of motility in the flagellate Euglena gracilis. Acta Protozool 35:161–165

    Google Scholar 

  • Ghetti F, Colombetti G, Lenci F, Campani E, Polacco E, Quaglia M (1985) Fluorescence of Euglena gracilis photoreceptor pigment: an in vitro microspectrofluorometric study. Photochem Photobiol 42:29–33

    Article  CAS  Google Scholar 

  • Giometto A, Altermatt F, Maritan A, Stocker R, Rinaldo A (2015) Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. Proc Natl Acad Sci U S A 112(22):7045–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gojdics M (1939) Some observations on Euglena sanguinea Ehrbg. Trans Am Microsc Soc 58:241–248

    Article  Google Scholar 

  • Gomelsky M, Kaplan S (1995) appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 177:4609–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomelsky M, Kaplan S (1998) AppA, a redox regulator of photosystem formation in Rhodobacter sphaeroides 2.4.1, is a flavoprotein. Identification of a novel FAD binding domain. J Biol Chem 273:35319–35325

    Article  CAS  PubMed  Google Scholar 

  • Gössel I (1957) Über das Aktionsspektrum der Phototaxis chlorophyllfreier Euglenen und über die Absorption des Augenflecks. Arch Microbiol 27:288–305

    Google Scholar 

  • Govorunova EG, Sineshchekov OA (2005) Chemotaxis in the green flagellate alga Chlamydomonas. Biochemistry (Mosc) 70(7):717–725

    Article  CAS  Google Scholar 

  • Govorunova EG, Jung KH, Sineshchekov OA, Spudich JL (2004) Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86(4):2342–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gualtieri P (1993a) A biological point of view on photoreception (no-imaging vision) in algae. J Photochem Photobiol B Biol 18:95–100

    Article  Google Scholar 

  • Gualtieri P (1993b) Euglena gracilis: is the photoreception enigma solved? J Photochem Photobiol B Biol 19:3–14

    Article  CAS  Google Scholar 

  • Gualtieri P (2001) Rhodopsin-like-proteins: light detection pigments in Leptolyngbya, Euglena, Ochromonas, Pelvetia. In: Häder D-P, Lebert M (eds) Photomovement, vol 1. Elsevier, Amsterdam, pp 281–295

    Chapter  Google Scholar 

  • Gualtieri P, Barsanti L, Rosati G (1986) Isolation of the photoreceptor (paraflgellar body) of the phototactic flagellate Euglena gracilis. Arch Microbiol 145:303–305

    Article  CAS  Google Scholar 

  • Häder D-P (1979) Photomovement. In: Haupt W, Feinleib ME (eds) Encyclopedia of Plant Physiology, New Series, vol 7. Springer, Berlin, Heidelberg, pp 268–309

    Google Scholar 

  • Häder D-P (1985) Effect of UV-B on motility and photobehavior in the green flagellate, Euglena gracilis. Arch Microbiol 141:159–163

    Article  Google Scholar 

  • Häder D-P (1986) Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate Euglena gracilis. Photochem Photobiol 44:651–656

    Article  Google Scholar 

  • Häder D-P (1987a) Photomovement in eukaryotic microorganisms. Photobiochem Photobiophys, Suppl: 203–214

    Google Scholar 

  • Häder D-P (1987b) Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis. Arch Microbiol 147:179–183

    Article  PubMed  Google Scholar 

  • Häder D-P (1991) Phototaxis and gravitaxis in Euglena gracilis. In: Lenci F, Ghetti F, Colombetti G, Häder D-P, Song P-S (eds) Biophysics of Photoreceptors and Photomovements in Microorganisms. Plenum Press, New York, pp 203–221

    Chapter  Google Scholar 

  • Häder D-P (1993) Simulation of phototaxis in the flagellate Euglena gracilis. J Biol Phys 19:95–108

    Article  Google Scholar 

  • Häder D-P (1997) Gravitaxis and phototaxis in the flagellate Euglena studied on TEXUS missions. In: Cogoli A, Friedrich U, Mesland D, Demets R (eds) Life Science Experiments Performed on Sounding Rockets (1985–1994). ESTEC, ESA Publications Division, Noordwijk, pp 77–79

    Google Scholar 

  • Häder D-P (1998) Orientierung im Licht: Phototaxis bei Euglena gracilis. Mikrokosmos 87:3–11

    Google Scholar 

  • Häder D-P (2003) UV-B impact on the life of aquatic plants. In: Ambasht RS, Ambasht NK (eds) Modern Trends in Applied Aquatic Ecology. Kluwer Acad./Plenum Publ, New York, pp 149–172

    Chapter  Google Scholar 

  • Häder D-P (2004) Photoecology and environmental photobiology. In: Horspool W, Lenci F (eds) CRC Handbook of Organic Photochemistry and Photobiology, vol 2. CRC Press, Boca Raton, pp 1161–1167

    Google Scholar 

  • Häder D-P, Brodhun B (1991) Effects of ultraviolet radiation on the photoreceptor proteins and pigments in the paraflagellar body of the flagellate, Euglena gracilis. J Plant Physiol 137:641–646

    Article  Google Scholar 

  • Häder D-P, Griebenow K (1988) Orientation of the green flagellate, Euglena gracilis, in a vertical column of water. FEMS Microbiol Ecol 53:159–167

    Article  Google Scholar 

  • Häder D-P, Häder MA (1988) Inhibition of motility and phototaxis in the green flagellate, Euglena gracilis, by UV-B radiation. Arch Microbiol 150:20–25

    Article  Google Scholar 

  • Häder D-P, Lebert M (1998) The photoreceptor for phototaxis in the photosynthetic flagellate Euglena gracilis. Photochem Photobiol 68:260–265

    Article  Google Scholar 

  • Häder D-P, Lebert M (2000) Real-time tracking of microorganisms. In: Häder D-P (ed) Image Analysis: Methods and Applications. CRC Press, Boca Raton, pp 393–422

    Google Scholar 

  • Häder D-P, Lebert M 2009 Photoorientation in photosynthetic flagellates. In: Jin T, Hereld D, editors. Methods in Molecular Biology. Totowa: Humana Press. 571. p. 51–65.

    Google Scholar 

  • Häder D-P, Lipson ED (1986) Fourier analysis of angular distributions for motile microorganisms. Photochem Photobiol 44:657–663

    Article  Google Scholar 

  • Häder D-P, Liu SM (1991) Biochemical isolation and spectroscopic characterization of possible photoreceptor pigments for phototaxis in a freshwater Peridinium. Photochem Photobiol 54:143–146

    Article  Google Scholar 

  • Häder D-P, Melkonian M (1983) Phototaxis in the gliding flagellate, Euglena mutabilis. Arch Microbiol 135:25–29

    Article  Google Scholar 

  • Häder D-P, Reinecke E (1991) Phototactic and polarotactic responses of the photosynthetic flagellate, Euglena gracilis. Acta Protozool 30:13–18

    Google Scholar 

  • Häder D-P, Colombetti G, Lenci F, Quaglia M (1981) Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch Microbiol 130:78–82

    Article  Google Scholar 

  • Häder D-P, Lebert M, Di Lena MR (1986) New evidence for the mechanism of phototactic orientation of Euglena gracilis. Curr Microbiol 14:157–163

    Article  Google Scholar 

  • Häder D-P, Lebert M, DiLena MR (1987) Effects of culture age and drugs on phototaxis in the green flagellate, Euglena gracilis. Plant Physiol 6:169–174

    Google Scholar 

  • Häder D-P, Ntefidou M, Iseki M, Watanabe M (2005) Phototaxis photoreceptor in Euglena gracilis. In: Wada M, Shimazaki K, Iino M (eds) Light Sensing in Plants. Springer, Tokyo, pp 223–229

    Chapter  Google Scholar 

  • Häder D-P, Richter P, Villafañe VE, Helbling EW (2014) Influence of light history on the photosynthetic and motility responses of Gymnodinium chlorophorum exposed to UVR and different temperatures. J Photochem Photobiol B Biol 138:273–281

    Article  CAS  Google Scholar 

  • Harz H, Nonnengässer C, Hegemann P (1992) The photoreceptor current of the green alga Chlamydomonas. Philos Trans R Soc London B 338:39–52

    Article  Google Scholar 

  • Hasle RG (1950) Phototactic vertical migration in marine dinoflagellates. Oikos 2:162–175

    Article  Google Scholar 

  • Haupt W (1959) Die Phototaxis der Algen. Handbuch der Pflanzenphysiologie 17(1):318–370

    Google Scholar 

  • Heelis DV, Kernick W, Philips GO, Davies K (1979) Separation and identification of the carotenoid pigments of stigmata isolated from light-grown cells of Euglena gracilis strain Z. Arch Microbiol 121:207–211

    Article  CAS  PubMed  Google Scholar 

  • Heelis DV, Heelis PF, Kernick WA, Phillips GO (1980) The stigma of Euglena gracilis strain Z: an investigation into the possible occurance of carotenoproteins and nuleic acids. Cytobios 29:135–143

    CAS  PubMed  Google Scholar 

  • Hill NA, Häder D-P (1997) A biased random walk for the trajectories of swimming micro-organisms. J Theor Biol 186:503–526

    Article  CAS  PubMed  Google Scholar 

  • Hill N, Plumpton L (2000) Control strategies for the polarotactic orientation of the microorganism Euglena gracilis. J Theor Biol 203(4):357–365

    Article  CAS  PubMed  Google Scholar 

  • Hill NA, Vincent RV (1993) A simple model and strategies for orientation in phototactic microorganisms. J Theor Biol 163:223–235

    Article  Google Scholar 

  • Hu C, Wang S, Guo L, Xie P (2014) Effects of the proximal factors on the diel vertical migration of zooplankton in a plateau meso-eutrophic Lake Erhai, China. J Limnol 73(2):375–386

    Article  Google Scholar 

  • Hyams JS (1982) The Euglena paraflagellar rod: structure, relationship to other flagellar components and preliminary biochemical characterization. J Cell Sci 55:199–210

    CAS  PubMed  Google Scholar 

  • Inaba K, Mizuno K, Shiba K (2014) Structure, function, and phylogenetic consideration of calaxin. In: Sexual Reproduction in Animals and Plants. Springer, Tokyo, pp 49–57

    Chapter  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida C, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Murakami A, Sato K, Nishina Y, Shiga K, Takahashi T, Higashi S, Iseki M, Watanabe M (2005) Photocycle features of heterologously expressed and assembled eukaryotic flavin-binding BLUF domains of photoactivated adenylyl cyclase (PAC), a blue light receptor in Euglena gracilis. Photochem Photobiol Sci 4:762–769

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Murakami A, Iseki M, Takahashi T, Higashi S, Watanabe M (2010) Differentiation of photocycle characteristics of flavin-binding BLUF domains of α-and β-subunits of photoactivated adenylyl cyclase of Euglena gracilis. Photochem Photobiol Sci 9(10):1327–1335

    Article  CAS  PubMed  Google Scholar 

  • Itoh A, Tamura W (2008) Object manipulation by a formation-controlled Euglena group. In: Bio-mechanisms of Swimming and Flying. Springer, Tokyo, pp 41–52

    Chapter  Google Scholar 

  • Iwata T, Watanabe A, Iseki M, Watanabe M, Kandori H (2011) Strong donation of the hydrogen bond of tyrosine during photoactivation of the BLUF domain. J Phys Chem Lett 2(9):1015–1019

    Article  CAS  Google Scholar 

  • Iwatsuki K (1992) Stentor coeruleus shows positive photokinesis. Photochem Photobiol 55:469–471

    Article  Google Scholar 

  • James TW, Crescitelli F, Loew ER, McFarland WN (1992) The eyespot of Euglena gracilis: a microspectrophotometric study. Vis Res 32:1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Jennings HS (1906) Behavior of the Lower Organisms. Columbia University Press, New York

    Book  Google Scholar 

  • Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. Plant Physiol 97:1122–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josef K, Saranak J, Foster KW (2005) Ciliary behavior of a negatively phototactic Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 61:97–111

    Article  PubMed  Google Scholar 

  • Karnkowska A, Bennett MS, Watza D, Kim JI, Zakryś B, Triemer RE (2015) Phylogenetic relationships and morphological character evolution of photosynthetic Euglenids (Excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62(3):362–373

    Article  CAS  PubMed  Google Scholar 

  • Kavaliers M, Ossenkopp K-P (1994) Effects of magnetic and electric fields in invertebrates and lower vertebrates. In: Carpenter DO, Ayrapetyan S (eds) Biological Effects of Electric and Magnetic Fields. Sources and Mechanisms, vol 1. Academic Press Inc., San Diego, pp 205–240

    Chapter  Google Scholar 

  • Kessler JO, Hill NA, Häder D-P (1992) Orientation of swimming flagellates by simultaneously acting external factors. J Phycol 28:816–822

    Article  Google Scholar 

  • Kim D (2013) Control of Tetrahymena pyriformis as a microrobot. PhD thesis, Drexel University

    Google Scholar 

  • Kim YJ, Chizhov I, Engelhard M (2009) Functional expression of the signaling complex sensory rhodopsin II/transducer II from Halobacterium salinarum in Escherichia coli. Photochem Photobiol 85(2):521–528

    Article  CAS  PubMed  Google Scholar 

  • Kiriyama H, Nanmori T, Hari K, Matsuoka D, Fukami Y, Kikkawa U, Yasuda T (1999) Identification of the catalytic subunit of cAMP-dependent protein kinase from the photosynthetic flagellate, Euglena gracilis Z. FEBS Lett 450(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Kisielewska G, Kolicka M, Zawierucha K (2015) Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. Eur J Protistol 51(2):138–141

    Article  PubMed  Google Scholar 

  • Kivic PA, Vesk M (1972a) Structure and function in the euglenoid eyespot apparatus: The fine structure, and response to environmental changes. Planta 105:1–14

    Article  CAS  PubMed  Google Scholar 

  • Kivic PA, Vesk M (1972b) Structure and function of the euglenoid eyespot. The probable location of the phototaxis photoreceptor. J Exp Bot 23:1070–1075

    Article  Google Scholar 

  • Kivic PA, Vesk M (1974a) Pinocytotic uptake of protein from the reservoir in Euglena. Arch Microbiol 96:155–159

    Article  CAS  Google Scholar 

  • Kivic PA, Vesk M (1974b) The structure of the eyespot apparatus in bleached strains of Euglena gracilis. Cytobiologie 10:88–101

    Google Scholar 

  • Kivic PA, Walne PL (1983) Algal photosensory apparatus probably represent multiple parallel evolutions. Biosystems 16:31–38

    Article  CAS  PubMed  Google Scholar 

  • Komsic-Buchmann K, Becker B (2012) Contractile Vacuoles in Green Algae–Structure and Function. Advances in Algal Cell Biology. Walter de Gruyter, Berlin, pp 123–141

    Google Scholar 

  • Koumura Y, Suzuki T, Yoshikawa S, Watanabe M, Iseki M (2004) The origin of photoactivated adenylyl cyclase (PAC), the Euglena blue-light receptor: phylogenetic analysis of orthologues of PAC subunits from several euglenoids and trypanosome-type adenylyl cyclases from Euglena gracilis. Photochem Photobiol Sci 3(6):580–586

    Article  CAS  PubMed  Google Scholar 

  • Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54(3):111–121

    Article  CAS  PubMed  Google Scholar 

  • Kreimer G (1994) Cell biology of phototaxis in flagellate algae. Int Rev Cytol 148:229–309

    Article  Google Scholar 

  • Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur J Cell Biol 53:101–111

    CAS  PubMed  Google Scholar 

  • Krinsky NI, Goldsmith TH (1960) The carotenoids of the flagellated alga, Euglena gracilis. Arch Biochem Biophys 91(2):271–279

    Article  CAS  PubMed  Google Scholar 

  • Kronestedt E, Walles B (1975) On the presence of plastids and the eyespot apparatus in a porfiromycin-bleached strain of Euglena gracilis. Protoplasma 84:75–82

    Article  Google Scholar 

  • Kühnel-Kratz C, Schäfer J, Häder D-P (1993) Phototaxis in the flagellate, Euglena gracilis, under the effect of microgravity. Microgravity Sci Technol 6:188–193

    PubMed  Google Scholar 

  • Leander BS, Witek RP, Farmer MA (2001) Trends in the evolution of the euglenid pellicle. Evolution 55:2215–2235

    Article  CAS  PubMed  Google Scholar 

  • Lebert M (2001) Phototaxis of Euglena gracilis - flavins and pterins. In: Häder D-P, Lebert M (eds) Photomovement, vol 1. Elsevier, Amsterdam, pp 297–341

    Chapter  Google Scholar 

  • Lebert M, Häder D-P (1997) Behavioral mutants of Euglena gracilis: functional and spectroscopic characterization. J Plant Physiol 151:188–195

    Article  CAS  PubMed  Google Scholar 

  • Lebert M, Häder D-P (2000) Photoperception and phototaxis in flagellated algae. Res Adv Photochem Photobiol 1:201–226

    Google Scholar 

  • Lebert M, Porst M, Häder D-P (1999) Circadian rhythm of gravitaxis in Euglena gracilis. J Plant Physiol 155:344–349

    Article  CAS  PubMed  Google Scholar 

  • Leedale GF (1982) Ultrastructure. In: Buetow DE (ed) The Biology of Euglena. Physiology, vol 3. Academic Press, New York, pp 1–27

    Google Scholar 

  • Lenci F, Colombetti G, Häder D-P (1983) Role of flavin quenchers and inhibitors in the sensory transduction of the negative phototaxis in the flagellate, Euglena gracilis. Curr Microbiol 9:285–290

    Article  CAS  Google Scholar 

  • Lenci F, Häder D-P, Colombetti G (1984) Photosensory responses in freely motile microorganisms. In: Colombetti G, Lenci F (eds) Membranes and Sensory Transduction. Plenum Press, New York, pp 199–229

    Chapter  Google Scholar 

  • Lenci F, Ghetti F, Colombetti G, Häder D, Song P-S (2012) Biophysics of photoreceptors and photomovements in microorganisms. Springer Science & Business Media

    Google Scholar 

  • Lindes DA, Diehn B, Tollin G (1965) Phototaxigraph: recording instrument for determination of rate of response of phototactic microorganisms to light of controlled intensity and wavelength. Rev Sci Instrum 36:1721–1725

    Article  Google Scholar 

  • Liu SM, Häder D-P (1994) Isolation and characterization of proteins from the putative photoreceptor for positive phototaxis in the dinoflagellate, Peridinium gatunense Nygaard. Photochem Photobiol 59:86–90

    Article  CAS  Google Scholar 

  • Lüdtke T, Häder D-P (2007) Molecular genetics of the novel photoreceptor PAC in euglenophytes and bacteria. In: Thangadurai D, Tang W, Pullaiah T (eds) Genes, Genomes & Genomics, vol 2. Vedams eBooks Ltd., New Delhi, pp 189–200

    Google Scholar 

  • Ma Z, Helbling EW, Li W, Villafañe VE, Gao K (2012) Motility and photosynthetic responses of the green microalga Tetraselmis subcordiformis to visible and UV light levels. J Appl Phycol 24(6):1613–1621

    Article  CAS  Google Scholar 

  • Mast SO (1911) Light and Behavior of Organisms. Chapman & Hall ltd., London

    Book  Google Scholar 

  • Mast SO (1914) Orientation in Euglena with some remarks on tropisms. Biol Zent Bl 34:641–664

    Google Scholar 

  • Masuda S (2013) Light detection and signal transduction in the BLUF photoreceptors. Plant Cell Physiol 54(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–623

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Hori T, Takahashi T, Kubota M, Watanabe M, Okamoto K, Masuda K, Sugai M (1998) Discovery of signaling effect of UV-B/C light in the extended UV-A/blue-type action spectra for step-down and step-up photophobic responses in the unicellular flagellate alga Euglena gracilis. Protoplasma 201:45–52

    Article  Google Scholar 

  • Matsunaga S, Takahashi T, Watanabe M, Sugai M, Hori T (1999) Control by ammonium ion of the change from step-up to step-down photophobically responding cells in the flagellate alga Euglena gracilis. Plant Cell Physiol 40:213–221

    Article  CAS  Google Scholar 

  • Melkonian M, Meinicke-Liebelt M, Häder D-P (1986) Photokinesis and photophobic responses in the gliding flagellate, Euglena mutabilis. Plant Cell Physiol 27:505–513

    CAS  Google Scholar 

  • Meyer R, Hildebrand E (1988) Phototaxis of Euglena gracilis at low external calcium concentration. J Photochem Photobiol B Biol 2(4):443–453

    Article  CAS  Google Scholar 

  • Michel H (1990) General and practical aspects of membrane protein crystallization. In: Michel H (ed) Crystallization of Membrane Proteins. CRC Press, Boca Raton, FL, pp 73–89

    Google Scholar 

  • Mikolajczyk E (1984a) Photophobic responses in Euglenina. 1. Effects of excitation wavelength and external medium on the step-up response of light- and dark-grown Euglena gracilis. Acta Protozool 23:1–10

    CAS  Google Scholar 

  • Mikolajczyk E (1984b) Photophobic responses in Euglenina: 2. Sensitivity to light of the colorless flagellate Astasia longa in low and high viscosity medium. Acta Protozool 23:85–92

    Google Scholar 

  • Mikolajczyk E, Diehn B (1975) The effect of potassium iodide on photophobic responses in Euglena: evidence for two photoreceptor pigments. Photochem Photobiol 22:269–271

    Article  CAS  PubMed  Google Scholar 

  • Mikolajczyk E, Diehn B (1976) Light-induced body movement of Euglena gracilis coupled to flagellar photophobic responses by mechanical stimulation. J Protozool 23:144–147

    Article  Google Scholar 

  • Mikolajczyk E, Diehn B (1978) Morphological alteration in Euglena gracilis induced by treatment with CTAB (Cetyltrimethylammonium bromide) and Triton X-100: correlations with effects on photophobic behavioral responses. J Protozool 25:461–470

    Article  Google Scholar 

  • Mikolajczyk E, Diehn B (1979) Mechanosensory responses and mechanoreception in Euglena gracilis. Acta Protozool 18:591–602

    Google Scholar 

  • Mikolajczyk E, Kuznicki L (1981) Body contraction and ultrastructure of Euglena. Acta Protozool 20:1–24

    Google Scholar 

  • Murray JM (1981) Control of cell shape by calcium in the Euglenophyceae. J Cell Sci 49:99–117

    CAS  PubMed  Google Scholar 

  • Nagahama T, Suzuki T, Yoshikawa S, Iseki M (2007) Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons. Neurosci Res 59(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Nakaoka Y, Tokioka R, Shinozawa T, Fujita J, Usukura J (1991) Photoreception of Paramecium cilia: localization of photosensitivity and binding with anti-frog-rhodopsin IgG. J Cell Sci 99:67–72

    CAS  PubMed  Google Scholar 

  • Nasir A (2014) Analysis of the gravitaxis signal transduction chain in Euglena gracilis. 40th COSPAR Scientific Assembly. Held 2–10 August 2014, in Moscow, Russia, Abstract F1. 1–18-14. p 2234

    Google Scholar 

  • Nebenführ A, Schäfer A, Galland P, Senger H, Hertel R (1991) Riboflavin-binding sites associated with flagella of Euglena: a candidate for blue-light photoreceptor? Planta 185:65–71

    Article  PubMed  Google Scholar 

  • Neumann R, Hertel R (1994) Purification and characterization of a riboflavin-binding protein from flagella of Euglena gracilis. Photochem Photobiol 60:76–83

    Article  CAS  Google Scholar 

  • Ngô HM, Bouck GB (1998) Heterogeneity and a coiled coil prediction of trypanosomatid-like flagellar rod proteins in Euglena. J Eukaryot Microbiol 45:323–333

    Article  PubMed  Google Scholar 

  • Nichols KM, Rikmenspoel R (1977) Mg2+-dependent electrical control of flagellar activity in Euglena. J Cell Sci 23:211–225

    CAS  PubMed  Google Scholar 

  • Nichols KM, Rikmenspoel R (1978) Control of flagellar motion in Chlamydomonas and Euglena by mechanical microinjection of Mg2+ and Ca2+ and by electric current injection. J Cell Sci 29:233–247

    CAS  PubMed  Google Scholar 

  • Nichols KM, Rikmenspoel R (1980) Flagellar waveform reversal in Euglena. Exp Cell Res 129:377–381

    Article  CAS  PubMed  Google Scholar 

  • Nichols KM, Jacklet A, Rikmenspoel R (1980) Effects of Mg2+ and Ca2+ on photoinduced Euglena flagellar responses. J Cell Biol 84:355–363

    Article  CAS  PubMed  Google Scholar 

  • Ntefidou M, Häder D-P (2005) Photoactivated adenylyl cyclase (PAC) genes in the flagellate Euglena gracilis mutant strains. Photochem Photobiol Sci 4:732–739

    Article  CAS  PubMed  Google Scholar 

  • Ntefidou M, Iseki M, Richter P, Streb C, Lebert M, Watanabe M, Häder D-P (2003a) RNA interference of genes involved in photomovement in Astasia longa and Euglena gracilis mutants. Rec Res Dev Biochem 4:925–930

    CAS  Google Scholar 

  • Ntefidou M, Iseki M, Watanabe M, Lebert M, Häder D-P (2003b) Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis. Plant Physiol 133(4):1517–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntefidou M, Lüdtke T, Ahmad M, Häder D-P (2006) Heterologous expression of photoactivated adenylyl cyclase (PAC) genes from the flagellate Euglena gracilis in insect cells. Photochem Photobiol 82:1601–1605

    Article  CAS  PubMed  Google Scholar 

  • Nultsch W (1975) Phototaxis and photokinesis. In: Carlile MJ (ed) Primitive Sensory and Communication Systems. Academic Press, New York, pp 29–90

    Google Scholar 

  • Nultsch W, Häder D-P (1970) Bestimmungen der photo-phobotaktischen Unterschiedsschwelle bei Phormidium uncinatum. Ber Dtsch Bot Ges 83:185–192

    Google Scholar 

  • Nultsch W, Häder D-P (1979) Photomovement of motile microorganisms. Photochem Photobiol 29:423–437

    Article  CAS  Google Scholar 

  • Nultsch W, Häder D-P (1988) Photomovement in motile microorganisms—II. Photochem Photobiol 47:837–869

    Article  CAS  PubMed  Google Scholar 

  • Nultsch W, Throm G (1975) Effect of external factors on phototaxis of Chlamydomonas reinhardtii. I. Light. Arch Microbiol 103:175–179

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 8:489–500

    Article  CAS  PubMed  Google Scholar 

  • Omodeo P (1975) Phototactic system morphology: Florenz

    Google Scholar 

  • Omodeo P (1980) The photoreceptive apparatus of flagellated algal cells: Comparative morphology and some hypothesis on functioning. In: Lenci F, Colombetti G (eds) Photoreception and Sensory Transduction in Aneural Organisms. Plenum Press, New York, pp 127–154

    Chapter  Google Scholar 

  • Omodeo P (2013) Istituto di Biologia Animale de11'Università di Padova 35100 Padova, Italy. Photoreception and Sensory Transduction in Aneural Organisms 33: 127

    Google Scholar 

  • Osafune T, Schiff JA (1980) Stigma and flagellar swelling in relation to light and carotenoids in Euglena gracilis var. bacillaris. J Ultrastruct Res 73:336–349

    Article  CAS  PubMed  Google Scholar 

  • Ozasa K, Lee J, Song S, Hara M, Maeda M (2013) Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium. Lab Chip 13(20):4033–4039

    Article  CAS  PubMed  Google Scholar 

  • Ozasa K, Lee J, Song S, Maeda M (2014) Transient freezing behavior in photophobic responses of Euglena gracilis investigated in a microfluidic device. Plant Cell Physiol 55(10):1704–1712

    Article  CAS  PubMed  Google Scholar 

  • Peacock MB, Kudela RM (2014) Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnol Oceanogr 59(3):660–673

    Article  CAS  Google Scholar 

  • Petersen-Mahrt SK, Ekelund NGA, Widell S (1994) Influence of UV-B radiation and nitrogen starvation on daily rhythms in phototaxis and cell shape of Euglena gracilis. Physiol Plant 92:501–505

    Article  CAS  Google Scholar 

  • Piccinni E, Mammi M (1978) Motor apparatus of Euglena gracilis: ultrastructure of the basal portion of the flagellum and the paraflagellar body. Bollettino di Zoologia 45:405–414

    Article  Google Scholar 

  • Poniewozik M (2014) The euglenoid genera Astasia and Menoidium (Euglenozoa) from eastern Poland. Nova Hedwigia 99(1–2):193–212

    Article  Google Scholar 

  • Porterfield DM (1997) Orientation of motile unicellular algae to oxygen: Oxytaxis in Euglena. Biol Bull 193:229–230

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim EG (1937) Über das Stigma bei farblosen Flagellaten. Cytologia 1:234–255

    Article  Google Scholar 

  • Pringsheim EG (1948) The loss of chromatophores in Euglena gracilis. New Phytol 47:52–87

    Article  Google Scholar 

  • Rhiel E, Häder D-P, Wehrmeyer W (1988) Diaphototaxis and gravitaxis in a freshwater Cryptomonas. Plant Cell Physiol 29:755–760

    CAS  PubMed  Google Scholar 

  • Richter P, Ntefidou M, Streb C, Lebert M, Häder D-P (2002) Cellular perception and transduction mechanisms of gravity in unicellular organisms. Curr Top Plant Biol 3:143–154

    CAS  Google Scholar 

  • Richter PR, Streb C, Häder D-P (2006) Sign change of phototaxis in Euglena gracilis. Trends Photochem Photobiol 11:57–61

    CAS  Google Scholar 

  • Richter P, Helbling W, Streb C, Häder D-P (2007) PAR and UV effects on vertical migration and photosynthesis in Euglena gracilis. Photochem Photobiol 83:818–823

    Article  CAS  PubMed  Google Scholar 

  • Robenek H, Melkonian M (1983) Structural specialization of the paraflagellar membrane of Euglena. Protoplasma 117:154–157

    Article  Google Scholar 

  • Rosati GF, Verni L, Barsanti V, Passarelli V, Gualtieri P (1991) Ultrastructure of the apical zone of Euglena gracilis: photoreceptors and motor apparatus. Electron Microsc Rev 4:319–342

    Article  CAS  PubMed  Google Scholar 

  • Rosati G, Barsanti L, Passarelli V, Giambelluca A, Gualtieri P (1996) Ultrastructure of a novel non-photosynthetic Euglena mutant. Micron 27:367–373

    Article  Google Scholar 

  • Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285:41501–41508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiff JA, Lyman H, Russel GK (1971) Isolation of mutants from Euglena gracilis. In: San Pietro A (ed) Methods in Enzymology: Photosynthesis. Part A, vol 23. Academic Press, New York, pp 143–162

    Chapter  Google Scholar 

  • Schiff JA, Lyman H, Russel GK (1980) Isolation in Euglena gracilis: An addendum. In: San Pietro A (ed) Methods in Enzymology: Photosynthesis and Nitrogen Fixation. Part C, vol 69. Academic Press, New York, pp 23–29

    Chapter  Google Scholar 

  • Schmidt W, Galland P, Senger H, Furuya M (1990) Microspectrophotometry of Euglena gracilis. Planta 182:375–381

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Geßner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18(8):1908–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder-Lang S, Schwärzel M, Seifert R, Strünker T, Kateriya S, Looser J, Watanabe M, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Häder D-P, Kuhlmann HW (1999) Phototaxis in Chlamydodon mnemosyne: determination of illuminance-response curve and the action spectrum. J Photochem Photobiol B Biol 49:35–40

    Article  CAS  Google Scholar 

  • Shimmen T (1981) Quantitative studies on step-down photophobic response of Euglena in an individual cell. Protoplasma 106:37–48

    Article  Google Scholar 

  • Shneyour A, Avron M (1975) Properties of photosynthetic mutants isolated from Euglena gracilis. Plant Physiol 55:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons PJ (1981) The role of electricity in plant movements. New Phytol 87:11–37

    Article  CAS  Google Scholar 

  • Sineshchekov V, Geiß D, Sineshchekov O, Galland P, Senger H (1994a) Fluorometric characterization of pigments associated with isolated flagella of Euglena gracilis: evidence for energy migration. J Photochem Photobiol B Biol 23(2):225–237

    Article  CAS  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling PG, Walne PL, Schwarz OJ, Triplett LL (1973) Studies on characterization of pigments from isolated eyespots of Euglenoid flagellates. J Phycol Suppl 9:20

    Google Scholar 

  • Stallwitz E (1992) Einfluß von Schwermetallionen auf Motilität, Orientierung, Wachstum und Pigmentierung des Flagellaten Euglena gracilis. Diplom, Friedrich-Alexander University Erlangen-Nürnberg, Germany

    Google Scholar 

  • Stallwitz E, Häder D-P (1993) Motility and phototactic orientation of the flagellate Euglena gracilis impaired by heavy metal ions. J Photochem Photobiol B Biol 18:67–74

    Article  CAS  Google Scholar 

  • Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gärtner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286:1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Strasburger E (1878) Wirkung des Lichtes und der Wärme auf Schwärmsporen. G. Fischer Verlag, Jena

    Google Scholar 

  • Strother GK, Wolken JJ (1960) Microspectrophotometry of Euglena. Chloroplast and eyespot. Nature 188:601–602

    Article  Google Scholar 

  • Sumida S, Lyman H, Nobuhiko K, Osafune T (2007) Mechanism of conversion from heterotrophy to autotrophy in Euglena gracilis. Cytologia 72:447–457

    Article  Google Scholar 

  • Suzaki T, Williamson RE (1983) Photoresponse of a colorless euglenoid flagellate, Astasia longa. Plant Sci Lett 32:101–107

    Article  Google Scholar 

  • Suzaki T, Williamson RE (1986) Ultrastructure and sliding of pellicular structures during euglenoid movement in Astasia longa Pringsheim (Sarcomastigophora, Euglenoida). J Protozool 33:179–184

    Article  Google Scholar 

  • Sznee K, Crouch LI, Jones MR, Dekker JP, Frese RN (2014) Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. Photosynth Res 119(1–2):243–256

    Article  CAS  PubMed  Google Scholar 

  • Tahedl H, Häder D-P (2001) The use of image analysis in ecotoxicology. In: Häder D-P (ed) Image Analysis: Methods and Applications. CRC Press, Boca Raton, pp 447–458

    Google Scholar 

  • Takeda J, Nakashima M, Ueno H, Mori T, Iseki M, Watanabe M (2013) Search for pterin-binding protein from Euglena. J Biol Macromol 13(1):13–20

    CAS  Google Scholar 

  • Tamponnet C, Rona JP, Barbotin JN, Calvayrac R (1988) Effects of high external calcium concentrations on etiolated Euglena gracilis Z cells and evidence of an internal membrane potential. Biochim Biophys Acta 943:87–94

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollin G (1973) Phototaxis in Euglena. II. Biochemical aspects. In: Pérez-Miravete A (ed) Behaviour of Microorganisms. Plenum Press, New York, pp 91–105

    Chapter  Google Scholar 

  • Tollin G, Robinson MJ (1969) Phototaxis in Euglena. V. Photosupression of phototactic activity by blue light. Photochem Photobiol 9:411–416

    Article  CAS  PubMed  Google Scholar 

  • Toporik H, Carmeli I, Volotsenko I, Molotskii M, Rosenwaks Y, Carmeli C, Nelson N (2012) Large photovoltages generated by plant photosystem I crystals. Adv Mater 24(22):2988–2991

    Article  CAS  PubMed  Google Scholar 

  • Umrath K (1959) Galvanotaxis. Handbuch der Pflanzenphysiologie 17(1):164–167

    Google Scholar 

  • Vavra J (1962) Instability of the stigma in apochlorotic Euglena gracilis var. bacillaris. J Protozool 9 Suppl:28–29

    Google Scholar 

  • Verni F, Rosati G, Lenzi P, Barsanti L, Passarelli V, Gualtieri P (1992) Morphological relationship between paraflagellar swelling and paraxial rod in Euglena gracilis. Micron Microsc Acta 23:37–44

    Article  Google Scholar 

  • Verworn M (1889) Psychophysiologische Protistenstudien. Gustav Fischer Verlag, Jena, pp 25–130

    Google Scholar 

  • Votta JJ, Jahn TL (1972) Galvanotaxis of Euglena gracilis. J Protozool 19(Suppl):43

    Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5(12):1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Walne PL, Arnott HJ (1967) The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugemetos. Planta 77:325–353

    Article  CAS  PubMed  Google Scholar 

  • Walne PL, Lenci F, Mikolajczyk E, Colombetti G (1984) Effect of pronase treatment on step-down and step-up photophobic responses in Euglena gracilis. Cell Biol Int Rep 8:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Walne PL, Pasarelli V, Barsanti L, Gualtieri P (1998) Rhodopsin: A photopigment for phototaxis in Euglena gracilis. Crit Rev Plant Sci 17:559–574

    Article  CAS  Google Scholar 

  • Watanabe M, Iseki M (2005) Discovery and characterization of photoactivated adenylyl cyclase (PAC), a novel blue-light receptor flavoprotein, from Euglena gracilis. In: Briggs WR, Spudich JL (eds) Handbook of Photosensory Receptors. Wiley-VCH, Weinheim, pp 447–460

    Chapter  Google Scholar 

  • Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A (2011) PACα–an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116(4):616–625

    Article  CAS  PubMed  Google Scholar 

  • Wenderoth K, Häder D-P (1979) Wavelength dependence of photomovement in desmids. Planta 145:1–5

    Article  CAS  PubMed  Google Scholar 

  • Wolken JJ (1956) A molecular morphology of Euglena gracilis var. bacillaris. J Protozool 3(4):211–221

    Article  Google Scholar 

  • Wolken J (1960) Photoreceptors: Comparative studies. In: Allen MB (ed) Comparative Biochemistry of Photoreactive Systems. Academic Press, New York, pp 145–167

    Google Scholar 

  • Wolken JJ (1977) Euglena: the photoreceptor system for phototaxis. J Protozool 24:518–522

    Article  CAS  PubMed  Google Scholar 

  • Wolken JJ (2012) Euglena: an Experimental Organism for Biochemical and Biophysical Studies. Springer

    Google Scholar 

  • Wolken JJ, Shin E (1958) Photomotion in Euglena gracilis. I. Photokinesis. II. Phototaxis. J Protozool 5:39–46

    Article  Google Scholar 

  • Yoshikawa S, Suzuki T, Watanabe M, Iseki M (2005) Kinetic analysis of the activation of photoactivated adenylyl clclase (PAC), a blue-light receptor for photomovements of Euglena. Photochem Photobiol Sci 4:727–731

    Article  CAS  PubMed  Google Scholar 

  • Zhenan M, Shouyu R (1983) The effect of red light on photokinesis of Euglena gracilis. In: Tseng CK (ed) Proceedings of the joint China-U.S. phycology symposium. Science in China Press, Beijing, pp 311–321

    Google Scholar 

Download references

Acknowledgements

The authors thank their long-time coworkers Peter Richter, Maria Ntefidou and Sebastian Strauch, who have critically read this manuscript. The financial support for the underlying work for this review by DFG, DLR, BMBF and JSPS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donat-P. Häder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Häder, DP., Iseki, M. (2017). Photomovement in Euglena . In: Schwartzbach, S., Shigeoka, S. (eds) Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-319-54910-1_11

Download citation

Publish with us

Policies and ethics