Skip to main content

Evolutionary Origin of Euglena

  • Chapter
  • First Online:
Book cover Euglena: Biochemistry, Cell and Molecular Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 979))

Abstract

Euglenids (Excavata, Discoba, Euglenozoa, Euglenida) is a group of free-living, single-celled flagellates living in the aquatic environments. The uniting and unique morphological feature of euglenids is the presence of a cell covering called the pellicle. The morphology and organization of the pellicle correlate well with the mode of nutrition and cell movement. Euglenids exhibit diverse modes of nutrition, including phagotrophy and photosynthesis. Photosynthetic species (Euglenophyceae) constitute a single subclade within euglenids. Their plastids embedded by three membranes arose as the result of a secondary endosymbiosis between phagotrophic eukaryovorous euglenid and the Pyramimonas-related green alga. Within photosynthetic euglenids three evolutionary lineages can be distinguished. The most basal lineage is formed by one mixotrophic species, Rapaza viridis. Other photosynthetic euglenids are split into two groups: predominantly marine Eutreptiales and freshwater Euglenales. Euglenales are divided into two families: Phacaceae, comprising three monophyletic genera (Discoplastis, Lepocinclis, Phacus) and Euglenaceae with seven monophyletic genera (Euglenaformis, Euglenaria, Colacium, Cryptoglena, Strombomonas, Trachelomonas, Monomorphina) and polyphyletic genus Euglena. For 150 years researchers have been studying Euglena based solely on morphological features what resulted in hundreds of descriptions of new taxa and many artificial intra-generic classification systems. In spite of the progress towards defining Euglena, it still remains polyphyletic and morphologically almost undistinguishable from members of the recently described genus Euglenaria; members of both genera have cells undergoing metaboly (dynamic changes in cell shape), large chloroplasts with pyrenoids and monomorphic paramylon grains. Model organisms Euglena gracilis Klebs, the species of choice for addressing fundamental questions in eukaryotic biochemistry, cell and molecular biology, is a representative of the genus Euglena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cpSSU:

Cytoplasmic small subunit

EGT:

Endosymbiotic gene transfer

hsp90:

Heat shock protein 90

ITS:

Internal transcribed spacer

LGT:

Laterar gene transfer

nLSU:

Nuclear large subunit

nSSU:

Nuclear small subunit

psbO:

Photosystem II manganese-stabilizing polypeptide

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase oxygenase

References

  • Adl SM, Simpson AGB, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett MS, Triemer RE (2012) A new method for obtaining nuclear gene sequences field samples and taxonomic revisions of the photosynthetic euglenoids Lepocinclis (Euglena) helicoideus and Lepocinclis (Phacus) horridus (Euglenophyta). J Phycol 48:254–260

    Article  CAS  PubMed  Google Scholar 

  • Bennett M, Wiegert KE, Triemer RE (2014) Characterization of new genus Euglenaformis and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia 53:66–73

    Article  CAS  Google Scholar 

  • Blaxter ML (2004) The promise of a DNA taxonomy. Philos Trans R Soc Lond Ser B Biol Sci 359:669–679

    Article  CAS  Google Scholar 

  • Breglia SA, Yubuki N, Hoppenrath M, Leander BS (2010) Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospitebacati n.gen. et n.sp.(Symbiontida). BMC Microbiol 10:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Breglia SA, Yubuki N, Leander BS (2013) Ultrastructure and Molecular Phylogenetic Position of Heteronema scaphurum: A Eukaryovorous Euglenid with a Cytoproct. J Eukaryot Microbiol 60:107–120

    Article  CAS  PubMed  Google Scholar 

  • Brosnan S, Shin W, Kjer KM, Triemer RE (2003) Phylogeny of the photosynthetic euglenophytes inferred from the nuclear SSU and partial LSU rDNA. Int J Syst Evol Microbiol 53:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6:a016147

    Article  PubMed  PubMed Central  Google Scholar 

  • Busse I, Preisfeld A (2003) Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of Distigma and Astasia (Euglenozoa). Int J Syst Evol Microbiol 53:617–624

    Article  CAS  PubMed  Google Scholar 

  • Bütschli O (1884) Mastigophora in Bronn’s Klassen u. Ordnungen des Thierreichs, vol 1. Winter’s Verlag, Leipzig, pp 617–1097

    Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? Biosystems 14:461–481

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2010) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345

    Article  PubMed  Google Scholar 

  • Ciugulea I, Nudelman MA, Brosnan S, Triemer RE (2008) Phylogeny of the euglenoid loricate genera Trachelomonas and Strombomonas (Euglenophyta) inferred from nuclear SSU and LSU rDNA. J Phycol 44:406–418

    Article  CAS  PubMed  Google Scholar 

  • Da Cunha AM (1913) Contribuicao para o conhecimento da fauna de Protozoarios do Brasil. Mem Inst Oswaldo Cruz 5:101–122

    Article  Google Scholar 

  • Deflandre G (1930) Strombomonas, nouveau genre d'Euglénacées (Trachelomonas EHR. pro parte). Arch Protistenkd 69:551–614

    Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    Article  CAS  PubMed  Google Scholar 

  • Dujardin F (1841) Historie naturelle des zoophytes infusoires: comprenant la physiologie et la classification de ces animaux et la maniere de les etudier a l’aide du microscope. Libraire encyclopedique de Roret, Paris, p 684

    Google Scholar 

  • Ehrenberg GC (1830) Beiträge zur Kenntnß der Organisation der Infusorien und ihrer geographischen Verbreitung, brsonders in Sibirien. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, pp 1–88

    Google Scholar 

  • Ehrenberg CG (1831) Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin (1832)

    Google Scholar 

  • Ehrenberg CG (1833) Dritter Beitrag zur Erkenntniß großer Organisation in der Richtung des kleinstes Raumes. Physikalishe Abhandlungen Königlichen Akademie der Wissenschaften zu Berlin (1835), pp 145–336

    Google Scholar 

  • Eyferth B and Schoenichen W (1925) Einfachste Lebensformen des Tier- und Pflanzenreiches. 5. Aufl. Band I. Spaltpflanzen, Geissellinge, Algen, Pilze. Berlin: Lichterfelde, pp vii + 519

    Google Scholar 

  • Farmer MA (2011) Euglenozoa. Eucaryotic Microbes:311–321

    Google Scholar 

  • Gibbs SP (1978) The chloroplast of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete Gene Map of the Plastid Genome of the Nonphotosynthetic Euglenoid Flagellate Astasia longa. Protist 151:347–351

    Article  CAS  PubMed  Google Scholar 

  • Gojdics M (1953) The Genus Euglena. The University of Wisconsin Press, Madison, p 253

    Google Scholar 

  • Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23:167–172

    Article  CAS  PubMed  Google Scholar 

  • Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ (2011) Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6(4)

    Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollande A (1942) Étude cytologique et biologique de quelques flagellés libres. Arch Zool exp et gén 83:1–268

    Google Scholar 

  • Hrdá Š, Fousek J, Szabová J, Hampl V, Vlček Č (2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7:e33746

    Article  PubMed  PubMed Central  Google Scholar 

  • Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler T (2014) Ecology in the age of DNA barcoding: The resource, the promise and the challenges ahead. Mol Ecol Resour 14:221–232

    Article  CAS  PubMed  Google Scholar 

  • Kamikawa R, Tanifuji G, Kawachi M, Miyashita H, Hashimoto T, Inagaki Y (2015) Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biol Evol 7:1133–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnkowska A, Bennett MS, Watza D, Kim JI, Zakryś B, Triemer RE (2015) Phylogenetic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62:362–373

    Article  CAS  PubMed  Google Scholar 

  • Karnkowska-Ishikawa A, Milanowski R, Kwiatowski J, Zakryś B (2010) Taxonomy of the Phacus oscillans (Euglenaceae) and its close relatives – balancing morphological and molecular features. J Phycol 46:172–182

    Article  CAS  Google Scholar 

  • Karnkowska-Ishikawa A, Milanowski R, Zakryś B (2011) The species Euglena deses (Euglenaceae) revisited: new morphological and molecular data. J Phycol 47:653–661

    Article  PubMed  Google Scholar 

  • Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B (2012) Taxonomic revisions of morphologically similar species from two genera: Euglena (E. granulata and E. velata) and Euglenaria (Eu. anabaena, Eu. caudata, Eu. clavata). J Phycol 48:729–739

    Article  PubMed  Google Scholar 

  • Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B (2013) A redescription of morphologically similar species from the genus Euglena: E. laciniata, E. sanguinea, E. sociabilis, and E. splendens. J Phycol 49:616–626

    Article  PubMed  Google Scholar 

  • Kim JI, Shin W (2008) Phylogeny of the Euglenales inferred from plastid LSU rDNA sequences. J Phycol 44:994–1000

    Article  PubMed  Google Scholar 

  • Kim JI, Shin W (2014) Molecular phylogeny and cryptic diversity of the genus Phacus (Phacaceae, Euglenophyceae) and the descriptions of seven new species. J Phycol 50:948–959

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Shin W, Triemer RE (2010) Multigene analyses of photosynthetic euglenoids and new family Phacaceae (Euglenales). J Phycol 46:1278–1287

    Article  Google Scholar 

  • Kim IJ, Shin W, Triemer RE (2012) Phylogenetic reappraisal of the genus Monomorphina (Euglenophyceae) based on molecular and morphological data. J Phycol 49:82–91

    Article  PubMed  Google Scholar 

  • Kim IJ, Shin W, Triemer RE (2013) Cryptic speciation in the genus Cryptoglena (Euglenaceae) revealed by nuclear and plastid SSU and LSU rDNA gene. J Phycol 49:92–102

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Linton EW, Shin W (2015) Taxon-rich multigene phylogenty of photosynthetic euglenoids (Euglenohpyceae). Front Ecol Evol 3:98

    Article  Google Scholar 

  • Kiss JZ, Vasconcelos AC, Triemer RE (1987) Structure of the euglenoid storage carbohydrate, Paramylon. Am J Bot 74:877–882

    Article  CAS  Google Scholar 

  • Klebs G (1883) Über die Organisation einiger Flagellaten-Gruppen und ihre Beziehungen zu Algen und Infusorien. Unters Bot Inst Tübingen 1:233–262

    Google Scholar 

  • Kosmala S, Karnkowska A, Milanowski R, Kwiatowski J, Zakryś B (2005) Phylogenetic and taxonomic position of Lepocinclis fusca comb. nov. (= Euglena fusca) (Euglenaceae): Morphological and molecular justification. J Phycol 41:1258–1267

    Article  CAS  Google Scholar 

  • Kosmala S, Milanowski R, Brzóska K, Pękala M, Kwiatowski J, Zakryś B (2007a) Phylogeny and systematics of the genus Monomorpina (Euglenaceae) based on morphological and molecular data. J Phycol 43:171–185

    Article  CAS  Google Scholar 

  • Kosmala S, Bereza M, Milanowski R, Kwiatowski J, Zakryś B (2007b) Morphological and molecular examination of relationships and epitype establishment of Phacus pleuronectes, Phacus orbicularis and Phacus hamelii. J Phycol 43:1071–1082

    Article  CAS  Google Scholar 

  • Kosmala S, Karnkowska-Ishikawa A, Milanowski R, Kwiatowski J, Zakryś B (2009) Phylogeny and systematics of species from the genus Euglena (Euglenaceae) with axial, stellate chloroplasts based on morphological and molecular data - new taxa, emended diagnoses and epitypifications. J Phycol 45:464–481

    Article  CAS  PubMed  Google Scholar 

  • Lax G, Simpson AGB (2013) Combining molecular data with classical morphology for uncultured phagotrophic Euglenids (Excavata): a single-cell approach. J Eukaryot Microbiol 60(6):615–625

    Article  CAS  PubMed  Google Scholar 

  • Leander BS, Esson HJ, Breglia SA (2007) Macroevolution of complex cytoskeletal systems in euglenids. BioEssays 29:987–1000

    Article  PubMed  Google Scholar 

  • Leedale GF (1967) Euglenoid flagellates. Prentice-Hall, Englewood Cliffs, N. J. p. 242

    Google Scholar 

  • Linton EW, Hittner D, Lewandowski C, Auld T, Triemer RE (1999) A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol 46:217–223

    Article  CAS  PubMed  Google Scholar 

  • Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE (2010) Reconstructing Euglenoid Evolutionary Relationships using Three Genes: Nuclear SSU and LSU, and Chloroplast SSU rDNA Sequences and the Description of Euglenaria gen. nov. (Euglenophyta). Protist 161:603–619

    Article  CAS  PubMed  Google Scholar 

  • Łukomska-Kowalczyk M, Karnkowska A, Milanowski R, Łach Ł, Zakryś B (2015) Delimiting species in the Phacus longicauda complex (Euglenida) through morphological and molecular analyses. J Phycol 51:1147–1157

    Article  PubMed  Google Scholar 

  • Łukomska-Kowalczyk M, Karnkowska A, Krupska M, Milanowski R, Zakryś B (2016) DNA barcoding in autotrophic euglenids: evaluation of COI and 18S rDNA. J Phycol 52:951–960

    Article  PubMed  Google Scholar 

  • Marin B, Palm A, Klingberg MM (2003) Phylogeny and taxonomic revision of plastid-containing Euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145

    Article  CAS  PubMed  Google Scholar 

  • Markunas CM, Triemer RE (2016) Evolutionary history of the enzymes involved in the CalvinBenson cycle in euglenids. J Eukaryot Microbiol 63:326–339

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H (2011) Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol 11:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Mereschkowsky KS (1877) Etjudy nad prostejsimi zivotnymi severa Rossii. Trudy S-Peterburgsk Obshch Estestvoisp 8:1–299

    Google Scholar 

  • Milanowski R, Zakryś B, Kwiatowski J (2001) Phylogenetic analysis of chloroplast small-subunit rRNA genes of the genus Euglena Ehrenberg. Int J Syst Evol Microbiol 51:773–781

    Article  CAS  PubMed  Google Scholar 

  • Milanowski R, Kosmala S, Zakryś B, Kwiatowski J (2006) Phylogeny of photosynthetic euglenophytes based on combined chloroplast and cytoplasmic SSU rDNA sequence analysis. J Phycol 42:721–730

    Article  CAS  Google Scholar 

  • Monfils AK, Triemer RE, Bellairs EF (2011) Charakterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50:156–169

    Article  Google Scholar 

  • Montegut-Felkner AE, Triemer RE (1997) Phylogenetic relationships of selected euglenoid genera based on morphological and molecular data. J Phycol 33:512–519

    Article  CAS  Google Scholar 

  • Moreira D, López-García P, Rodriguez-Valera F (2001) New insights into the phylogenetic position of diplonemids: G+C content bias, differences of evolutionary rate and a new environmental sequence. Int J Syst Evol Microbiol 51:2211–2219

    Article  CAS  PubMed  Google Scholar 

  • Müllner AN, Angeler DG, Samuel R, Linton EW, Triemer RE (2001) Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence. Int J Syst Evol Microbiol 51:783–791

    Article  PubMed  Google Scholar 

  • Nudelman MA, Rossi MS, Conforti V, Triemer RE (2003) Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications. J Phycol 39:226–235

    Article  CAS  Google Scholar 

  • Osafune T, Yokota A, Sumida,S, Hase E (1990) Immunogold Localization of Ribulose-1,5-Bisphosphate Carboxylase with Reference to Pyrenoid Morphology in Chloroplasts of Synchronized Euglena gracilis Cells. Plant Physiol 92(3):802–808

    Google Scholar 

  • Perty M (1849) Über vertikale Verbreitung mikroskopischer Lebensformen. Lepocinclis n. gen. Mitth Naturforsh Ges Bern 28:17–45

    Google Scholar 

  • Perty M (1852) Zur Kenntniss kleinster Lebensformen nach Bau, Funktionen. Systematik mit Specialverzeichniss der in der Schweiz beobachteten. Verlag von Jent und Reinert, Bern, p 228

    Google Scholar 

  • Preisfeld A, Berger S, Busse I, Liller S, Ruppel HG (2000) Phylogenetic analyses of various euglenoid taxa (Euglenozoa) based on 18S rDNA sequence data. J Phycol 36:220–226

    Article  CAS  Google Scholar 

  • Preisfeld A, Busse I, Klingberg M, Talke S, Ruppel HG (2001) Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasison the Rhabdomonadales (Euglenozoa). Int J Syst Evol Microbiol 51:751–758

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim EG (1956) Contributions towards a monograph of the genus Euglena. Nova Acta Leopoldina 18:1–168

    Google Scholar 

  • Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62

    Article  CAS  PubMed  Google Scholar 

  • Shin W, Triemer RE (2004) Phylogenetic analysis of the genus Euglena (Euglenophyceae) with particular reference to the species Euglena viridis. J Phycol 40:759–771

    Article  CAS  Google Scholar 

  • Simpson AGB (1997) The identity and composition of the Euglenozoa. Archiv Protistenk 148:318–328

    Article  Google Scholar 

  • Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1779

    Article  PubMed  Google Scholar 

  • Triemer RE and Zakryś B (2015) Photosynthetic euglenoids In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America: ecology and classification, 2nd edition. Academic Press, Amsterdam, pp. 457–482

    Google Scholar 

  • Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennett M, Brosnan S (2006) Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis gen. nov. (Euglenophyta). J Phycol 42:731–740

    Article  Google Scholar 

  • Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648

    Article  CAS  PubMed  Google Scholar 

  • Yabuki A, Nakayama T, Yubuki N, Hashimoto T, Ishida KI, Inagaki Y (2011) Tsukubamonas globosa n. gen., n. sp., a novel excavate flagellate possibly holding a key for the early evolution in “Discoba”. J Eukaryot Microbiol 58:319–331

    Article  PubMed  Google Scholar 

  • Yamaguchi A, Yubuki N, Leander BS (2012) Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol Biol 12:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Yubuki N, Edgcomb VP, Bernhardt JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Yubuki N, Simpson AGB, Leander BS (2013) Reconstruction of the feeding apparatus in Postgaardi mariagerensis provides evidence for character evolution within the Symbiontida (Euglenozoa). Eur J Protistol 49:32–39

    Article  PubMed  Google Scholar 

  • Zakryś B (1986) Contribution to the monograph of Polish members of the genus Euglena Ehr. 1830. Nova Hedwigia 42:491–540

    Google Scholar 

  • Zakryś B, Milanowski R, Empel J, Borsuk P, Gromadka R, Kwiatowski J (2002) Two different species of Euglena, E. geniculata and E. myxocylindracea (Euglenophyceae), are virtually genetically and morphologically identical. J Phycol 38:1190–1199

    Article  Google Scholar 

  • Zakryś B, Empel J, Milanowski R, Gromadka R, Borsuk P, Kędzior M, Kwiatowski J (2004) Genetic variability of Euglena agilis (Euglenophyceae). Acta Soc Bot Pol 73(4):305–309

    Article  Google Scholar 

  • Zakryś B, Karnkowska-Ishikawa A, Łukomska-Kowalczyk M, Milanowski R (2013) New photosynthetic euglenoid isolated in Poland: Euglenaria clepsydroides sp. nova (Euglenea). Eur J Phycol 48(3):260–269

    Article  Google Scholar 

  • Zimba PV, Rowan M, Triemer R (2004) Identification of euglenoid algae that produce ichthyotoxin (s). J Fish Dis 27:115–117

    Article  CAS  PubMed  Google Scholar 

  • Zimba PV, Moeller PD, Beauchesne K, Lane HE, Triemer RE (2010) Identification of euglenophycin – A toxin found in certain euglenoids. Toxicon 55:100–104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Zakryś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zakryś, B., Milanowski, R., Karnkowska, A. (2017). Evolutionary Origin of Euglena . In: Schwartzbach, S., Shigeoka, S. (eds) Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-319-54910-1_1

Download citation

Publish with us

Policies and ethics