Skip to main content

Robust Optimization of Shunted Piezoelectric Transducers for Vibration Attenuation Considering Different Values of Electromechanical Coupling

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3

Abstract

Structural vibration may occur in mechanical systems leading to fatigue, reduced durability or undesirable noise. In this context, shunting piezoelectric transducers to resonant shunts can be an appropriate measure for attenuating vibrations. The achieved vibration attenuation significantly depends on the tuning of the shunt parameters. Uncertainty in design and application of resonant shunted piezoelectric transducers may result in a detuned attenuation system and loss of attenuation performance. Therefore, we propose an approach based on robust optimization using the Bounded Real Lemma to contain the loss of vibration attenuation due to uncertainty. It is shown for resonant shunts, that for increasing electromechanical coupling coefficients the worst-case maximal vibration amplitudes for non-robust and robust optimization of shunt parameters converge. Furthermore by adding a negative capacitance to the resonant shunt, the worst-case maximal amplitude remains almost constant for all considered coupling coefficients for non-robust and robust optimization of the shunt parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck, B.S.: Negative capacitance shunting of piezoelectric patches for vibration control of continuous systems. PhD thesis, Georgia Institute of Technology (2012)

    Google Scholar 

  2. Niederberger, D.: Smart damping materials using shunt control. PhD thesis, Swiss Federal Institute of Technology Zürich (2005)

    Google Scholar 

  3. Moheimani, S.O.R., Fleming, A.J.: Piezoelectric Transducers for Vibration Control and Damping. Springer, London (2006)

    MATH  Google Scholar 

  4. Hagood, N.W., von Flotow, A.H.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)

    Article  Google Scholar 

  5. Neubauer, M., Oleskiewicz, R., Popp, K., Krzyzynski, T.: Optimization of damping and absorbing performance of shunted piezo elements utilizing negative capacitance. J. Sound Vib. 298, 84–107 (2006)

    Article  Google Scholar 

  6. Soltani, P., Kerschen, G., Tondreau, G., Deraemaeker, A.: Piezoelectric vibration damping using resonant shunt circuits: an exact solution. Smart Mater. Struct. 23, 1–11 (2014)

    Article  Google Scholar 

  7. Zambolini-Vicente, B.G.G.L., Silva, V.A.C., de Lima, A.M.G.: Robust design of shunt circuits for passive control of vibrations of composite structures. In: Proceedings of the 2nd International Symposium on Uncertainty Quantification and Stochastic Modeling (2014)

    Google Scholar 

  8. Mokrani, B., Burday, I., Tian, Z., Preumont, A.: Adaptive inductor for vibration damping in presence of uncertainty. In: Proceedings of SMART2015 7th ECCOMAS Thematic Conference on Smart Structures and Materials, Ponta Delgada, Azores, June 3–6 2015

    Google Scholar 

  9. Götz, B., Platz, R., Melz, T.: Consistent approach to describe and evaluate uncertainty in vibration attenuation using resonant piezoelectric shunting and tuned mass dampers. In: Proceedings of the 2nd International Symposium on Uncertainty Quantification and Stochastic Modeling Uncertainties 2014, Rouen/France, June 23–27 2014, pp. 51–64. INSA-Rouen

    Google Scholar 

  10. de Marneffe, B.: Active and passive vibration isolation and damping via shunted transducers. PhD thesis, Université Libre de Bruxelles (2007)

    Google Scholar 

  11. Scherer, C.: The Riccati inequality and state-space H -optimal control. PhD thesis, Bayerische Julius Maximilians-Universität Würzburg (1990)

    Google Scholar 

  12. Nemirovksi, A., Ben-Tal, A., El Ghaoui, L.: Robust Optimization. Princeton University Press, Princeton (2009)

    Google Scholar 

  13. Correa, R., Ramirez, H.C.: A global algorithm for nonlinear semidefinite programming. SIAM J. Optim. 15(1), 303–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Google Scholar 

Download references

Acknowledgements

The authors like to thank the German Research Foundation DFG for funding this research within the SFB 805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Kuttich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Kuttich, A., Götz, B., Ulbrich, S. (2017). Robust Optimization of Shunted Piezoelectric Transducers for Vibration Attenuation Considering Different Values of Electromechanical Coupling. In: Barthorpe, R., Platz, R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54858-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54858-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54857-9

  • Online ISBN: 978-3-319-54858-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics