Skip to main content

Parameterization of Large Variability Using the Hyper-Dual Meta-model

  • Conference paper
  • First Online:
Model Validation and Uncertainty Quantification, Volume 3

Abstract

One major problem in the design of aerospace components is the nonlinear changes in the response due to a change in the geometry and material properties. Many of these components have small nominal values and any change can lead to a large variability. In order to characterize this large variability, traditional methods require either many simulation runs or the calculations of many higher order derivatives. Each of these paths requires a large amount of computational power to evaluate the response curve. In order to perform uncertainty quantification analysis, even more simulation runs are required. The hyper-dual meta-model is used to characterize the response curve with the use of basis functions. The information of the curve is generated with the utilization of the hyper-dual step to determine the sensitivities at a few number of simulation runs. This paper shows the accuracy of this method for two different systems with parameterization at different stages in the design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metropolis, N., Ulam, S.: The monte carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  Google Scholar 

  2. Shapiro, A., Homem-de Mello, T.: On the rate of convergence of optimal solutions of monte carlo approximations of stochastic programs. SIAM J. Optim. 11(1), 70–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA J. 6, 1313–1319 (1968)

    Article  MATH  Google Scholar 

  4. Craig, R.R.: Coupling of substructures for dynamic analyses - an overview. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Structures, Structural Dynamics, and Materials and Co-located Conferences (2000)

    Google Scholar 

  5. Kammer, D.C., Triller, M.J.: Selection of component modes for Craig-Bampton substructure representations. ASME J. Vib. Acoust. 188(2), 264–270 (1996)

    Article  Google Scholar 

  6. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81(1), 23–69 (2003)

    Article  Google Scholar 

  7. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  8. Michael, S.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51(184), 699–706 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martins, J.R.R.A., Sturdza, P., Alonso, J.J.: The connection between the complex-step derivative approximation and algorithmic differentiation. AIAA Paper 921, 2001 (2001)

    Google Scholar 

  11. Martins, J.R.R.A., Sturdza, P., Alonso, J.J.: The complex-step derivative approximation. ACM Trans. Math. Soft. 29(3), 245–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lai, K.L., Crassidis, J.L.: Extensions of the first and second complex-step derivative approximations. J. Comput. Appl. Math. 219(1), 276–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lantoine, G., Russell, R.P., Dargent, T.: Using multicomplex variables for automatic computation of high-order derivatives. ACM Trans. Math. Softw. 38(3):16:1–16:21 (2012)

    Google Scholar 

  14. Garza, J., Millwater, H.: Sensitivity analysis in structural dynamics using the ZFEM complex variable finite element method. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1580 (2013)

    Google Scholar 

  15. Garza, J., Millwater, H.: Multicomplex newmark-beta time integration method for sensitivity analysis in structural dynamics. AIAA J. 53(5), 1188–1198 (2015)

    Article  Google Scholar 

  16. Fike, J.A., Alonso, J.J.: The development of hyper-dual numbers for exact second-derivative calculations. AIAA Paper 886, 124 (2011)

    Google Scholar 

  17. Fike, J.A.: Multi-objective optimization using hyper-dual numbers. PhD thesis, Stanford university (2013)

    Google Scholar 

  18. Fike, J.A., Jongsma, S., Alonso, J.J., Van Der Weide, E.: Optimization with gradient and hessian information calculated using hyper-dual numbers. AIAA Paper 3807, 2011 (2011)

    Google Scholar 

  19. Fike, J.A., Alonso, J.J.: Automatic differentiation through the use of hyper-dual numbers for second derivatives. In: Recent Advances in Algorithmic Differentiation, pp. 163–173. Springer, Berlin (2012)

    Google Scholar 

  20. Bonney, M.S., Kammer, D.C., Brake, M.R.W.: Fully parameterized reduced order models using hyper-dual numbers and component mode synthesis. In: Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. 46029 (2015)

    Google Scholar 

  21. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  22. Edwards, H.C.: Sierra framework version 3: core services theory and design. SAND Report No. SAND2002-3616 (2002)

    Google Scholar 

  23. Reese, G.M., et al.: Sierra structural dynamics user’s notes. Technical Report, Sandia National Laboratories (SNL-NM), Albuquerque (2015)

    Google Scholar 

  24. Bonney, M.S., Brake, M.R.W.: Determining reduced order models for optimal stochastic reduced order models. Technical Report SAND2015-6896, Sandia National Laboratories, Albuquerque, NM (2015)

    Google Scholar 

  25. Bonney, M.S., Kammer, D.C., Brake, M.R.W.: Determining model form uncertainty of reduced order models. In: Model Validation and Uncertainty Quantification, vol. 3, pp. 51–57. Springer, New York (2016)

    Google Scholar 

  26. Bonney, M.S., Kammer, D.C., Brake, M.R.W.: Numerical investigation of probability measures utilized in a maximum entropy approach. In: Uncertainty in Structural Dynamics, pp. 4307–4321 (2016)

    Google Scholar 

Download references

Acknowledgements

Sandia is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Bonney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Bonney, M.S., Kammer, D.C. (2017). Parameterization of Large Variability Using the Hyper-Dual Meta-model. In: Barthorpe, R., Platz, R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds) Model Validation and Uncertainty Quantification, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54858-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54858-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54857-9

  • Online ISBN: 978-3-319-54858-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics