Skip to main content

Adaptive Dynamic Range Compression for Improving Envelope-Based Speech Perception: Implications for Cochlear Implants

  • Chapter
  • First Online:
Emerging Technology and Architecture for Big-data Analytics

Abstract

The temporal envelope is the primary acoustic cue used in most cochlear implant (CI) devices for eliciting speech perception in implanted patients. Due to biological constraints, a compression scheme is required to adjust the wide dynamic range (DR) of input signals to a desirable level. Static envelope compression (SEC) is a well-known strategy used in CI speech processing, where a fixed compression ratio is adopted to narrow the envelope DR. More recently, a novel adaptive envelope compression (AEC) strategy has been proposed. In contrast to the SEC strategy, the AEC strategy more effectively enhances the modulation depth of the envelope waveforms to make the best use of the DR, in order to achieve higher intelligibility of envelope-based speech. In this chapter, we first introduce the theory of and implementation procedures for the AEC strategy. Then, we present four sets of experiments that were designed to evaluate the performance of the AEC strategy. In the first and second experiments, we investigated AEC performance under two types of challenging listening conditions: noisy and reverberant. In the third experiment, we explore the correlation between the adaptation rate using the AEC strategy and the intelligibility of envelope-compressed speech. In the fourth experiment, we investigated the compatibility of the AEC strategy with a noise reduction (NR) method, which is another important facet of a CI device. The AEC-processed sentences could provide higher intelligibility scores under challenging listening conditions than the SEC-processed sentences. Moreover, the adaptation rate was an important factor in the AEC strategy for producing envelope-compressed speech with optimal intelligibility. Finally, the AEC strategy could be integrated with NR methods to enhance speech intelligibility scores under noisy conditions further. The results from the four experiments imply that the AEC strategy has great potential to provide better speech perception performance than the SEC strategy, and can thus be suitably adopted in CI speech processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIDCD, Cochlear implants, vol. 116. NIH Publication, no. 11–4798 (2013)

    Google Scholar 

  2. L.M. Friesen, R.V. Shannon, D. Baskent, X. Wang, Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110 (2), 1150–1163 (2001)

    Article  Google Scholar 

  3. B.L. Fetterman, E.H. Domico, Speech recognition in background noise of cochlear implant patients. Otolaryngol. Head Neck Surg. 126 (3), 257–263 (2002)

    Article  Google Scholar 

  4. P.C. Loizou, Introduction to cochlear implants. IEEE Eng. Med. Biol. Mag. 18 (1), 32–42 (1999)

    Article  Google Scholar 

  5. F.G. Zeng, Trends in cochlear implants. Trends Amplif. 8 (1), 1–34 (2004)

    Article  Google Scholar 

  6. P.C. Loizou, M. Dorman, J. Fitzke, The effect of reduced dynamic range on speech understanding: implications for patients with cochlear implants. Ear Hear. 21 (1), 25–31 (2000)

    Article  Google Scholar 

  7. D.K. Eddington, W. Dobelle, D. Brackmann, M. Mladejovsky, J. Parkin, Auditory prostheses research with multiple channel intracochlear stimulation in man. Ann. Otol. Rhinol. Laryngol. 87 (6 Pt 2), 1–39 (1977)

    Google Scholar 

  8. F.G. Zeng, R.V. Shannon, Loudness balance between electric and acoustic stimulation. Hear. Res. 60 (2), 231–235 (1992)

    Article  Google Scholar 

  9. F.G. Zeng, G. Grant, J. Niparko, J. Galvin, R. Shannon, J. Opie, P. Segel, Speech dynamic range and its effect on cochlear implant performance J. Acoust. Soc. Am. 111 (1), 377–386 (2002)

    Article  Google Scholar 

  10. R. van Hoesel, M. Böhm, R.D. Battmer, J. Beckschebe, T. Lenarz, Amplitude-mapping effects on speech intelligibility with unilateral and bilateral cochlear implants. Ear Hear. 26 (4), 381–388 (2005)

    Article  Google Scholar 

  11. F. Chen, L.L. Wong, J. Qiu, Y. Liu, B. Azimi, Y. Hu, The contribution of matched envelope dynamic range to the binaural benefits in simulated bilateral electric hearing. J. Speech Lang. Hear. Res. 56 (4), 1166–1174 (2013)

    Article  Google Scholar 

  12. Y.H. Lai, Y. Tsao, F. Chen, Effects of adaptation rate and noise suppression on the intelligibility of compressed-envelope based speech. Plos One 10 (7), e0133519 (2015)

    Google Scholar 

  13. Y.H. Lai, F. Chen, Y. Tsao, Effect of adaptive envelope compression in simulated electric hearing in reverberation, in 2014 14th International Symposium on Integrated Circuits (ISIC) (IEEE, Singapore, 2014), pp. 204–207

    Google Scholar 

  14. Y.H. Lai, F. Chen, Y. Tsao, An adaptive envelope compression strategy for speech processing in cochlear implants, in Interspeech (2014), pp. 481–484

    Google Scholar 

  15. Y.H. Lai, P.C. Li, K.S. Tsai, W.C. Chu, S.T. Young, Measuring the long-term snrs of static and adaptive compression amplification techniques for speech in noise. J. Am. Acad. Audiol. 24 (8), 671–683 (2013)

    Article  Google Scholar 

  16. R.S. Tyler, S. Waltzman, S. Bankoski, Cochlear Implants: Audiological Foundations (Singular Publishing Group, San Diego, 1993)

    Google Scholar 

  17. P.P. Khing, B.A. Swanson, E. Ambikairajah, The effect of automatic gain control structure and release time on cochlear implant speech intelligibility. Plos One 8 (11), e82263 (2013)

    Google Scholar 

  18. F.G. Zeng, J.J. Galvin III, Amplitude mapping and phoneme recognition in cochlear implant listeners. Ear Hear. 20 (1), 60–74 (1999)

    Article  Google Scholar 

  19. K. Kasturi, P.C. Loizou, Use of s-shaped input-output functions for noise suppression in cochlear implants. Ear Hear. 28 (3), 402–411 (2007)

    Article  Google Scholar 

  20. A. Boothroyd, F.N. Erickson, L. Medwetsky, The hearing aid input: a phonemic approach to assessing the spectral distribution of speech. Ear Hear. 15 (6), 432–442 (1994)

    Article  Google Scholar 

  21. C.J. James, P.J. Blamey, L. Martin, B. Swanson, Y. Just, D. Macfarlane, Adaptive dynamic range optimization for cochlear implants: a preliminary study. Ear Hear. 23 (1), 49S–58S (2002)

    Article  Google Scholar 

  22. R.V. Shannon, F.G. Zeng, V. Kamath, J. Wygonski, M. Ekelid, Speech recognition with primarily temporal cues. Science 270 (5234), 303–304 (1995)

    Article  Google Scholar 

  23. Q.J. Fu, R.V. Shannon, X. Wang, Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing. J. Acoust. Soc. Am. 104 (6), 3586–3596 (1998)

    Article  Google Scholar 

  24. G.S. Stickney, F.G. Zeng, R. Litovsky, P. Assmann, Cochlear implant speech recognition with speech maskers. J. Acoust. Soc. Am. 116 (2), 1081–1091 (2004)

    Article  Google Scholar 

  25. M.F. Dorman, P.C. Loizou, D. Rainey, Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. J. Acoust. Soc. Am. 102 (5), 2993–2996 (1997)

    Article  Google Scholar 

  26. M.F. Dorman, P.C. Loizou, D. Rainey, Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs. J. Acoust. Soc. Am. 102 (4), 2403–2411 (1997)

    Article  Google Scholar 

  27. L.L. Wong, S.D. Soli, S. Liu, N. Han, M.-W. Huang, Development of the Mandarin hearing in noise test (MHINT). Ear Hear. 28 (2), 70S–74S (2007)

    Article  Google Scholar 

  28. O. Hazrati, S.O. Sadjadi, P.C. Loizou, J.H. Hansen, Simultaneous suppression of noise and reverberation in cochlear implants using a ratio masking strategy. J. Acoust. Soc. Am. 134 (5), 3759–3765 (2013)

    Article  Google Scholar 

  29. O. Hazrati, J. Lee, P.C. Loizou, Blind binary masking for reverberation suppression in cochlear implants. J. Acoust. Soc. Am. 133 (3), 1607–1614 (2013)

    Article  Google Scholar 

  30. O. Hazrati, P.C. Loizou, Reverberation suppression in cochlear implants using a blind channel-selection strategy. J. Acoust. Soc. Am. 133 (6), 4188–4196 (2013)

    Article  Google Scholar 

  31. T. Van den Bogaert, S. Doclo, J. Wouters, M. Moonen, Speech enhancement with multichannel wiener filter techniques in multimicrophone binaural hearing aids. J. Acoust. Soc. Am. 125 (1), 360–371 (2009)

    Article  Google Scholar 

  32. F. Chen, O. Hazrati, P.C. Loizou, Predicting the intelligibility of reverberant speech for cochlear implant listeners with a non-intrusive intelligibility measure. Biomed. Signal Process. Control 8 (3), 311–314 (2013)

    Article  Google Scholar 

  33. T. Venema, Compression for Clinicians (Delmar, Clifton Park, 2006)

    Google Scholar 

  34. P.E. Souza, Effects of compression on speech acoustics, intelligibility, and sound quality. Trends Amplif. 6 (4), 131–165 (2002)

    Article  Google Scholar 

  35. A.C. Neuman, M.H. Bakke, C. Mackersie, S. Hellman, H. Levitt, Effect of release time in compression hearing aids: paired-comparison judgments of quality. J. Acoust. Soc. Am. 98 (6), 3182–3187 (1995)

    Article  Google Scholar 

  36. A.C. Neuman, M.H. Bakke, C. Mackersie, S. Hellman, H. Levitt, The effect of compression ratio and release time on the categorical rating of sound quality. J. Acoust. Soc. Am. 103 (5), 2273–2281 (1998)

    Article  Google Scholar 

  37. M. Hansen, Effects of multi-channel compression time constants on subjectively perceived sound quality and speech intelligibility. Ear Hear. 23 (4), 369–380 (2002)

    Article  Google Scholar 

  38. S. Gatehouse, G. Naylor, C. Elberling, Linear and nonlinear hearing aid fittings–1. patterns of benefit. Int. J. Audiol. 45 (3), 130–152 (2006)

    Google Scholar 

  39. R. Van Hoesel, G.M. Clark, Evaluation of a portable two-microphone adaptive beamforming speech processor with cochlear implant patients. J. Acoust. Soc. Am. 97 (4), 2498–2503 (1995)

    Article  Google Scholar 

  40. V. Hamacher, W. Doering, G. Mauer, H. Fleischmann, J. Hennecke, Evaluation of noise reduction systems for cochlear implant users in different acoustic environment. Otol. Neurotol. 18 (6), S46–S549 (1997)

    Google Scholar 

  41. J. Wouters, J.V. Berghe, Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system. Ear Hear. 22 (5), 420–430 (2001)

    Article  Google Scholar 

  42. P.C. Loizou, A. Lobo, Y. Hu, Subspace algorithms for noise reduction in cochlear implants. J. Acoust. Soc. Am. 118 (5), 2791–2793 (2005)

    Article  Google Scholar 

  43. K. Chung, Challenges and recent developments in hearing aids part i. speech understanding in noise, microphone technologies and noise reduction algorithms. Trends Amplif. 8 (3), 83–124 (2004)

    Google Scholar 

  44. F. Chen, Y. Hu, M. Yuan, Evaluation of noise reduction methods for sentence recognition by mandarin-speaking cochlear implant listeners. Ear Hear. 36 (1), 61–71 (2015)

    Article  Google Scholar 

  45. P. Scalart, et al., Speech enhancement based on a priori signal to noise estimation, in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2 (IEEE, Atlanta, 1996), pp. 629–632

    Google Scholar 

  46. Y. Hu, P.C. Loizou, A generalized subspace approach for enhancing speech corrupted by colored noise. IEEE Trans. Speech and Audio Process. 11 (4), 334–341 (2003)

    Article  Google Scholar 

  47. Y.H. Lai, Y. Tsao, F. Chen, A study of adaptive wdrc in hearing aids under noisy conditions. Int. J. Speech Lang. Pathol. Audiol. 1 (2), 43–51 (2013)

    Google Scholar 

  48. G. Naylor, R.B. Johannesson, Long-term signal-to-noise ratio at the input and output of amplitude-compression systems. J. Am. Acad. Audiol. 20 (3), 161–171 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan under Project MOST 104-2221-E-001-026-MY2 and MOST 105-2218-E-155-014-MY2. This work was also supported by the National Natural Science Foundation of China (Grant No. 61571213). We thank Dr. Dao-Peng Chen of the Institute of Biomedical Sciences, Academia Sinica, for help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lai, YH., Chen, F., Tsao, Y. (2017). Adaptive Dynamic Range Compression for Improving Envelope-Based Speech Perception: Implications for Cochlear Implants. In: Chattopadhyay, A., Chang, C., Yu, H. (eds) Emerging Technology and Architecture for Big-data Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-54840-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54840-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54839-5

  • Online ISBN: 978-3-319-54840-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics