Skip to main content

Compute-in-Memory Architecture for Data-Intensive Kernels

  • Chapter
  • First Online:
  • 1618 Accesses

Abstract

Energy efficiency has emerged as a major barrier to system performance and scalability, especially when dealing with applications which require processing large datasets. These data-intensive kernels differentiate themselves from compute-intensive kernels in that increased processor performance through parallel execution and technology scaling are unlikely to sufficiently improve energy-efficiency. This chapter describes two embodiments of a novel and reconfigurable memory-based computing architecture which is designed to handle data-intensive kernels in a scalable and energy-efficient manner, suitable for next-generation systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Babecki, W. Qian, S. Paul, R. Karam, S. Bhunia, An embedded memory-centric reconfigurable hardware accelerator for security applications. IEEE Trans. Comput. (99):1–1 (2016). doi:10.1109/TC.2015.2512858

    MathSciNet  Google Scholar 

  2. M. Bohr, A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-State Circuits Soc. Newsl. 12 (1), 11–13 (2007)

    Article  Google Scholar 

  3. H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam, D. Burger, Dark silicon and the end of multicore scaling, in 2011 38th Annual International Symposium on Computer Architecture (ISCA) (IEEE, New York, 2011), pp. 365–376

    Google Scholar 

  4. Intl Solid State Circuits Conference (2013) ISSCC 2013 Tech Trends. http://isscc.org/trends

  5. R. Karam, R. Puri, S. Ghosh, S. Bhunia, Emerging trends in design and applications of memory-based computing and content-addressable memories. Proc. IEEE 103 (8), 1311–1330 (2015). doi:10.1109/JPROC.2015.2434888

    Article  Google Scholar 

  6. R. Karam, K. Yang, S. Bhunia, Energy-efficient reconfigurable computing using spintronic memory, in 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (2015), pp. 1–4. doi:10.1109/MWSCAS.2015.7282213

    Google Scholar 

  7. R. Karam, R. Puri, S. Bhunia, Energy-efficient adaptive hardware accelerator for text mining application kernels. IEEE Trans. Very Large Scale Integr. 24, 3526–3537 (2016)

    Article  Google Scholar 

  8. S. Paul, S. Chatterjee, S. Mukhopadhyay, S. Bhunia, Energy-efficient reconfigurable computing using a circuit-architecture-software co-design approach. IEEE J. Emerg. Sel. Topics Circuits Syst. 1 (3), 369–380 (2011)

    Article  Google Scholar 

  9. S. Paul, R. Karam, S. Bhunia, R. Puri, Energy-efficient hardware acceleration through computing in the memory, in 2014 Design, Automation Test in Europe Conference Exhibition (DATE) (2014). doi:10.7873/DATE.2014.279

    Google Scholar 

  10. S. Paul, A. Krishna, W. Qian, R. Karam, S. Bhunia, Maha: an energy-efficient malleable hardware accelerator for data-intensive applications. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23 (6), 1005–1016 (2015) doi:10.1109/TVLSI.2014.2332538

    Article  Google Scholar 

  11. S. Pawlowski, Architectural considerations for todays technology trends (2013). http://eecs.oregonstate.edu/

    Google Scholar 

  12. W. Qian, P.Y. Chen, R. Karam, L. Gao, S. Bhunia, S. Yu, Energy-efficient adaptive computing with multifunctional memory. Trans. Circuits Systems (2016)

    Google Scholar 

  13. H. Wong, V. Betz, J. Rose, Comparing fpga vs. custom cmos and the impact on processor microarchitecture, in Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays (ACM, New York, 2011), pp. 5–14

    Google Scholar 

  14. H.S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu, P.S. Chen, B. Lee, F.T. Chen, M.J. Tsai, Metal–oxide rram. Proc. IEEE 100(6):1951–1970 (2012)

    Article  Google Scholar 

  15. X. Wu, X. Chen, S. Hurst, Mapping of reed-muller coefficients and the minimisation of exclusive or-switching functions. IEE Proc. E-Comput. Digital Tech. 129 (1), 15–20 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Robert Karam, Somnath Paul, and Swarup Bhunia would like to acknowledge the contributions of Christopher Babecki (Intel), Pai-Yu Chen (Arizona State University), Dr. Ligang Gao (Arizona State University), Dr. Ruchir Puri (IBM T. J. Watson Research Lab), Dr. Wenchao Qian (Xilinx), and Dr. Shimeng Yu (Arizona State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Karam, R., Paul, S., Bhunia, S. (2017). Compute-in-Memory Architecture for Data-Intensive Kernels. In: Chattopadhyay, A., Chang, C., Yu, H. (eds) Emerging Technology and Architecture for Big-data Analytics. Springer, Cham. https://doi.org/10.1007/978-3-319-54840-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54840-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54839-5

  • Online ISBN: 978-3-319-54840-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics