Skip to main content

Why We Need Mathematics in Cartography and Geoinformatics?

  • Chapter
  • First Online:
  • 972 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 104))

Abstract

Cartography and geoinformatics are technical-based which deal with modelling and visualization of landscape in the form of a map. For the given subjects, mathematics is necessary for understanding of many procedures that are connected to modelling of the Earth as a celestial body, to ways of its projection into a plane, to methods and procedures of modelling of landscape and phenomena in society and visualization of these models in the form of electronic as well as classic paper maps. Not only general mathematics, but also its extension of differential geometry of curves and surfaces, ways of approximation of lines and surfaces of functional surfaces, mathematical statistics and multi-criterial analyses seem to be suitable and needful. Underestimation of the significance of mathematical education in cartography and geoinformatics is inappropriate and lowers competences of cartographers and geoinformaticians to solve problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ARCDATA. (2012). ArcCR500.gbd. Praha.

    Google Scholar 

  • Bayer, T. (2013). Educational materials for study of geoinformatics and cartography. Praha: Charles university. In. Czech.

    Google Scholar 

  • Bertin, J. (1967). Sémiologie graphique: Les diagrammes - Les Réseaux - Les Cartes. Paris: Mounton.

    Google Scholar 

  • Cressie, N. A. (1993). Statistics for Spatial Data. New York, USA: John Wiley & Sons, INC.

    Google Scholar 

  • Chvalina, J., & Hoskova-Mayerova, S. (2014). On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators. An. Stiint. Univ. “Ovidius” Constanta Ser. Mat., 22(1), pp. 85–103.

    Google Scholar 

  • DiBiase, D., DeMers, M., Luck, A. T., Johnson, A., Plewe, B., Kemp, K., & Wentz, E. (2006). Geographic Information Science and Technology: Body of Knowledge 2006. 127. Abington: University Consortium for Geographic Information Science.

    Google Scholar 

  • ESRI. (2013). User documentation. Copyright © 1995–2013 Esri.

    Google Scholar 

  • Grafarend, E. W., & Krumm, F. W. (2006). Map Projections: Cartographic Information System. Heidelberg, Germany: Springer-Verlag.

    Google Scholar 

  • Hofmann, A., Hošková-Mayerová, Š. (2016) Development of Applications in the Analysis of the Natural Environment. In: Aplimat - 15th Conference on Applied Mathematics 2016 Proceedings. Bratislava, Slovensko: Vydavatelstvo STU Bratislava, 2016, p. 467–481.

    Google Scholar 

  • Hofmann, A., Hoskova-Mayerova, S., & Talhofer, V. (2013). Usage of fuzzy spatial theory for modelling of terrain passability. Advances in Fuzzy Systems, 2013, p. 13.

    Google Scholar 

  • Hoskova-Mayerova, S. (2011). “Operational program, education for competitive advantage”, preparation of study materials for teaching in English. Procedia Social and Behavioral Sciences, 15.

    Google Scholar 

  • Hoskova-Mayerova, S. (2012). Topological hypergroupoids. Comput. Math. Appl., 64(9), pp. 2845–2849.

    Google Scholar 

  • Hoskova-Mayerova, S., & Rosicka, Z. (2012). Programmed learning. Procedia Social and Behavioral Sciences, 31, pp. 782–787.

    Google Scholar 

  • Hoskova-Mayerova, S. (2016). Leadership – training of military specialists in particular disciplines focused on mathematical modelling. New Trends and Issues Proceedings on Humanities and Social Sciences. [Online]. 05, pp 199–204. Available from: www.prosoc.eu.

  • Kainz, W. (2007). Fuzzy Logic and GIS. Vienna, Austria: University of Vienna.

    Google Scholar 

  • Kovarik, V. (2011). Possibilities of Geospatial Data Analysis using Spatial Modeling in ERDAS IMAGINE. Proceedings of the International Conference on Military Technologies - ICMT’11 (pp. 1307–1313). Brno: University of Defence.

    Google Scholar 

  • Kovarik, V., & Marsa, J. (2014). Specifics of thematic map production within geospatial support at a politico-strategic level. Geographia Technica, 9(1), pp. 52–65.

    Google Scholar 

  • Kraak, M.-J., & Ormeling, F. (2010). Cartography: Visualization of Geospatial Data (Third ed.). Harlow, Essex, England: Pearson Education Limited.

    Google Scholar 

  • Kresse, W., & Danko, D. M. (2012). Hanbook of Geographic Information. Berlin Heidelberg: Springer-Verlag. doi:10.1007/978-3-540-72680-7.

  • Lauermann, L. (1974). Technical cartography I. Brno: Military Academy Brno, in Czech.

    Google Scholar 

  • Lauermann, L. (1978). Technical cartography II. Brno: Military Academy Brno, in Czech.

    Google Scholar 

  • Lauermann, L., & Rybanský, M. (2002). Vojenská geografie (První. vyd.). Praha: Ministrstvo obrany ČR.

    Google Scholar 

  • MacEachren, A. M. (2004). How Maps Works: Representation, Visualization and Design. New York, USA: The Guilford Press.

    Google Scholar 

  • Nešetřil, J. (2011). Jsem agresivní optimista, říká o sobě professor Jaroslav Nešetřil. iFOFUM, časopis Univerzity Karlovy. Retrieved 26. 07 2016, z https://iforum.cuni.cz/IFORUM-10238-version1.pdf.

  • Office of Geomatics. (2014). Implementation Practice Web Mercator Map Projection (Version 1.0.0 ed.). Washington D.C., USA: National Geospatial-Intelligence Agency (NGA). Retrieved 02 09, 2015, from http://earth-info.nga.mil/GandG/wgs84/web_mercator/%28U%29%20NGA_SIG_0011_1.0.0_WEBMERC.pdf.

  • Rosicka, Z., & Hoskova-Mayerova, S. (2014). Motivation to study and work with talented students. Procedia Social and Behavioral Sciences, 114, pp. 234–238.

    Google Scholar 

  • Rybansky, M., & Vala, M. (2010). Relief impact on transport. ICMT’09: International Conference on Military Technologies (pp. 551–559). Brno: University of Defence.

    Google Scholar 

  • Rystedt, B., Ormeling, F., et al. (2014). The World of Maps. ICA: International Cartographic Association. Retrieved 2014, from http://mapyear.org/the-world-of-maps-book/.

  • Slocum, T., McMaster, R., Kessler, F., & Howard, H. (2005). Thematic Cartography and Geographic Visualization (2 ed.). Upper Saddle River, NJ 07458: Pearson Education, Inc.

    Google Scholar 

  • Srnka, E. (1968). Analytical solution in the cartographic generalization, in Czech) (Habilitation theses ed.). Brno: Military Academy in Brno.

    Google Scholar 

  • Svatonova, H., & Rybansky, M. (2014). Visualization of landscape changes and threatening environmental processes using a digital landscape model. IOP Conf. Ser.: Earth Environ. Sci. 18. 18, pp. 12–18. IOP science.

    Google Scholar 

  • Svatonova, H. (2017) New Trends in Obtaining Geographical Information: Interpretation of Satellite Data, Recent Trends in Social Systems: Quantitative Theories and Quantitative Models, Decision and Control, Vol. 66, Maturo (Eds.), 173–182.

    Google Scholar 

  • Talhofer, V. (2007). Basics of maps projections. Brno: Univerzity of Defence, In Czech.

    Google Scholar 

  • Talhofer, V., Hoskova-Mayerova, S., & Hofmann, A. (2012). Improvement of digital geographic data quality. International Journal of Production Research, 50(17), pp. 4846–4859.

    Google Scholar 

  • Töpfer, F. (1974). Kartographische Generalisierung. Leipzig: VEB Hermann Haack.

    Google Scholar 

  • Udvorka, P. (2006). Mapová algebra a její využití v geografických analýzách (Doctoral Thesis). Brno, Czech Republic: University of Defence.

    Google Scholar 

  • Voženílek, V., Kaňok, J., Bláha, J. D., Dobešová, Z., Hudeček, T., Kozáková, M., & Němcová, Z. (2011). Metody tematické kartografie, vizualizace prostorových jevů. Olomouc, Česká republika: Univerzita Palackého.

    Google Scholar 

  • Wilson, J. P., & Gallant, J. C. (2000). Terrain Analysis: Principles and Applications. New York: John Wiley & Sons. Inc.

    Google Scholar 

  • Zadeh, I. (1965). Fuzy Sets. Information and Control, 8, pp. 338 – 353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Talhofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Talhofer, V. (2017). Why We Need Mathematics in Cartography and Geoinformatics?. In: Hošková-Mayerová, Š., Maturo, F., Kacprzyk, J. (eds) Mathematical-Statistical Models and Qualitative Theories for Economic and Social Sciences. Studies in Systems, Decision and Control, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-54819-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54819-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54818-0

  • Online ISBN: 978-3-319-54819-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics