Skip to main content

Modal Analysis of Tower Crane with Cracks by the Dynamic Stiffness Method

  • Conference paper
  • First Online:
Topics in Modal Analysis & Testing, Volume 10

Abstract

The dynamic stiffness method is a powerful approach that enables to obtain more exact solution in dynamic analysis of structures, especially, when high frequency vibrations need to be investigated. On the other hand, the dynamic characteristics of high frequency modes of a structure are more sensitive to local damage such as crack. Therefore, the dynamic stiffness method gets to be a most efficient approach to analysis and identification of engineering structures. This report is devoted to modal analysis of tower crane with cracks by using the dynamic stiffness method. First, dynamic stiffness model of tower crane is conducted on the base of cracked beam element where crack is treated by an equivalent spring. Then, the established model is used for modal analysis of a typical tower crane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes. A review. J. Vib. Control. 9(7), 863–909 (2003)

    Article  MATH  Google Scholar 

  2. Ju, F., Choo, Y.S.: Dynamic characteristics of tower cranes. Proceedings of the 2nd International Conference on Structural Stability and Dynamics, pp. 260–266, World Scientific, Singapore (2002)

    Google Scholar 

  3. Ju, F., Choo, Y.S.: Dynamic analysis of tower cranes. J. Eng. Mech. 131(1), 88–96 (2005)

    Article  Google Scholar 

  4. Ju, F., Choo, Y.S., Cui, F.S.: Dynamic response of tower induced by the pendulum motion of the payload. Int. J. Solids Struct. 43(2), 376–389 (2006)

    Article  MATH  Google Scholar 

  5. Yu, Y., Han, Z.: The modeling analysis for tower crane based on finite element technology. Dev. Innov. Mach. Electr. Prod. 20(3), 93--95 (2007)

    Google Scholar 

  6. Nasser, M.A.: Dynamic analysis of cranes. Proceedings of the IMAC XIX, paper No. 194301, pp. 1592–1599

    Google Scholar 

  7. Oguamanam, D.C.D., Hansen, J.S.: Dynamic response of an overhead crane system. J. Sound Vib. 243(5), 889–906 (1998)

    Article  Google Scholar 

  8. Ghigliazza, R.M., Holmes, P.: On the dynamics of cranes or spherical pendula with moving supports. Int. J. Non linear Mech. 37(6), 1211–1221 (2002)

    Article  MATH  Google Scholar 

  9. Eden, J.F., Homer, P., Butler, A.J.: The dynamic stability of mobile cranes. Proc. Inst. Mech. Eng., Part D. 199(D4), 283–293 (1985)

    Article  Google Scholar 

  10. Wang, S., Shen, R., Jin, T., Song, S.: Dynamic behavior analysis and its application in tower crane structure damage identification. Adv. Mater. Res. 368-373, 2478–2482 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was completed under support from National Foundation for Science and Technology Development of Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Tien Khiem .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Formulas for Calculation of Crack Magnitude from Crack Depth

$$ \gamma ={E}_0A/T=2\pi \left(1-{\nu}_0^2\right){hf}_u(z),z=a/h; $$
$$ \begin{array}{l}{f}_u(z)={z}^2\Big(0.6272-0.17248z+5.92134{z}^2-10.7054{z}^3+31.5685{z}^4-67.47{z}^5+\\ {}\kern4.919997em +139.123{z}^6-146.682{z}^7+92.3552{z}^8\Big);\end{array} $$
$$ \theta = EI/R=6\pi \left(1-{\nu}_0^2\right){hf}_w(z); $$
$$ \begin{array}{l}{f}_w(z)={z}^2\Big(0.6272-1.04533z+4.5948{z}^2-9.9736{z}^3+20.2948{z}^4-33.0351{z}^5+\\ {}\kern4.919997em +47.1063{z}^6-40.7556{z}^7+19.6{z}^8\Big).\end{array} $$

Appendix 2: Shape Function for Bar and Beam Elements

$$ {h}_1\left(\alpha, \ell, x\right)=\left[{\varphi}_2\left(\alpha, \ell \right){\varphi}_1\left(\alpha, x\right)-{\varphi}_1\left(\alpha, \ell \right){\varphi}_2\left(\alpha, x\right)\right]/d;{h}_2\left(\alpha, \ell, x\right)=\left[{\varphi}_1\left(\alpha, 0\right){\varphi}_2\left(\alpha, x\right)-{\varphi}_2\left(\alpha, 0\right){\varphi}_1\left(\alpha, x\right)\right]/d; $$
$$ d\left(\alpha, \ell \right)={\varphi}_1\left(\alpha, 0\right){\varphi}_2\left(\alpha, \ell \right)-{\varphi}_1\left(\alpha, \ell \right){\varphi}_2\left(\alpha, 0\right);{H}_j\left(\beta, \ell, x\right)=\left(1/\Delta \right)\sum_{k=1}^4{\left(-1\right)}^{j+k}{\Delta}_{jk}{\Phi}_k\left(\beta, x\right),j=1,2,3,4. $$
$$ {\Delta}_{11}= \det \left[\begin{array}{ccc} {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_2\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \\ {} {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{12}= \det \left[\begin{array}{ccc} {\Phi}_2\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_2\left(\beta, \ell \right) & {\Phi}_3\left({\beta}_2,{\ell}_2\right) & {\Phi}_4\left(\beta, \ell \right) \\ {} {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left({\beta}_2,{\ell}_2\right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{13}= \det \left[\begin{array}{ccc} {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_2\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right]; $$
$$ {\Delta}_{14}= \det \left[\begin{array}{ccc} {\Phi}_2\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_2\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \end{array}\right];{\Delta}_{21}= \det \left[\begin{array}{ccc} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{22}= \det \left[\begin{array}{ccc} {\Phi}_1\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right]; $$
$$ {\Delta}_{23}= \det \left[\begin{array}{ccc} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{24}= \det \left[\begin{array}{ccc} {\Phi}_1\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \end{array}\right];{\Delta}_{31}= \det \left[\begin{array}{ccc} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_2\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right]; $$
$$ {\Delta}_{32}= \det \left[\begin{array}{ccc} {\Phi}_1\left(\beta, 0\right) & {\Phi}_2\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_2\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{33}= \det \left[\begin{array}{ccc} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, 0\right) & {\Phi}_2\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{24}= \det \left[\begin{array}{ccc} {\Phi}_1\left(\beta, 0\right) & {\Phi}_2\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_2\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \end{array}\right]; $$
$$ {\Delta}_{41}= \det \left[\begin{array}{ccc} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_2\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{42}= \det \left[\begin{array}{ccc} {\Phi}_1\left(\beta, 0\right) & {\Phi}_2\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_2\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) \end{array}\right];{\Delta}_{43}= \det \left[\begin{array}{ccc} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, 0\right) & {\Phi}_2\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) \end{array}\right]; $$
$$ {\Delta}_{44}= \det \left[\begin{array}{ccc} {\Phi}_1\left(\beta, 0\right) & {\Phi}_2\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) \\ {} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_2\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) \end{array}\right];\Delta = \det \left[\begin{array}{cccc} {\Phi}_1\left(\beta, 0\right) & {\Phi}_2\left(\beta, 0\right) & {\Phi}_3\left(\beta, 0\right) & {\Phi}_4\left(\beta, 0\right) \\ {} {\Phi}_1^{\prime}\left(\beta, 0\right) & {\Phi}_2^{\prime}\left(\beta, 0\right) & {\Phi}_3^{\prime}\left(\beta, 0\right) & {\Phi}_4^{\prime}\left(\beta, 0\right) \\ {} {\Phi}_1\left(\beta, \ell \right) & {\Phi}_2\left(\beta, \ell \right) & {\Phi}_3\left(\beta, \ell \right) & {\Phi}_4\left(\beta, \ell \right) \\ {} {\Phi}_1^{\prime}\left(\beta, \ell \right) & {\Phi}_2^{\prime}\left(\beta, \ell \right) & {\Phi}_3^{\prime}\left(\beta, \ell \right) & {\Phi}_4^{\prime}\left(\beta, \ell \right) \end{array}\right]. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Trong, D.X., Khiem, N.T. (2017). Modal Analysis of Tower Crane with Cracks by the Dynamic Stiffness Method. In: Mains, M., Blough, J. (eds) Topics in Modal Analysis & Testing, Volume 10. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54810-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54810-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54809-8

  • Online ISBN: 978-3-319-54810-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics