Active Distribution Networks Operation Within a Distribution Market Environment



This chapter proposes a novel method for the operation of active distribution networks within a distribution market environment taking into account multi-configuration of wind turbines. Multi-configuration multi-scenario market-based optimal power flow is used to maximise the social welfare considering uncertainties related to wind speed and load demand. Scenario-based approach is used to model the uncertainties. The method assesses the impact of multiple wind turbine configurations on the amount of wind power that can be injected into the grid and the distribution-locational marginal prices throughout the network. The effectiveness of the proposed method is demonstrated with 16-bus UK generic distribution system.


Wind power Active network management Social welfare Market-based optimal power flow Distribution network operators Distribution-locational marginal prices 


  1. 1.
    R. Banosa, F. Manzano-Agugliaro, F.G. Montoya, C. Gila, A. Alcayde, J. Gómez, “Optimization methods applied to renewable and sustainable energy: A review”, Renewable and Sustainable Energy Reviews, vol. 15, no. 4, pp. 1753–1766, 2011.Google Scholar
  2. 2.
    D. Kirschen and G. Strbac, Fundamentals of Power System Economics. New York: Wiley, 2004.Google Scholar
  3. 3.
    A. Piccolo, P. Siano, “Evaluating the impact of network investment deferral on distributed generation expansion”, IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1559–1567, 2009.Google Scholar
  4. 4.
    G. Mokryani, P. Siano, A. Piccolo and Zhe Chen, “Improving Fault Ride-Through Capability of Variable Speed Wind Turbines in Distribution Networks”, IEEE Systems J., vol. 7, no. 4, pp. 713–722, 2013.Google Scholar
  5. 5.
    P. Djapic, C. Ramsay, D. Pudjianto, G. Strbac, J. Mutale, N. Jenkins, and R. Allan, “Taking an active approach,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 68–77, 2007.Google Scholar
  6. 6.
    S. N. Liew and G. Strbac, “Maximising penetration of wind generation in existing distribution networks,” IEE Gener. Transm. Distrib., vol. 149, no. 3, pp. 256–262, 2002.Google Scholar
  7. 7.
    P. Siano, P. Chen, Z. Chen, and A. Piccolo, “Evaluating maximum wind energy exploitation in active distribution networks,” IET Gener. Transm. Distrib., vol. 4, no. 5, pp. 598–608, 2010.Google Scholar
  8. 8.
    G. Mokryani, P. Siano, “Strategic placement of distribution network operator owned wind turbines by using market-based optimal power flow,” IET Gener. Transm. Distrib., vol. 8, no. 2, pp. 281–289, 2014.Google Scholar
  9. 9.
    R. Palma-Behnke, J. L. A. Cerda, L. Vargas, and A. Jofre, “A distribution company energy acquisition market model with the integration of distribution generation and load curtailment options,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1718–1727, 2005.Google Scholar
  10. 10.
    Y. Zhou, L. Wang, and J. D. McCalley, “Designing effective and efficient incentive policies for renewable energy in generation expansion planning,” App. Energy, vol. 88, no. 6, pp. 2201–2209, 2011.Google Scholar
  11. 11.
    D. J. Burke and M. O’Malley, “Maximizing firm wind connection to security constrained transmission networks,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 749–759, May 2010.Google Scholar
  12. 12.
    L. Baringo, A. J. Conejo, “Transmission and Wind Power Investment”, IEEE Trans. Power Syst., vol. 27, no. 2, pp. 885–893, 2012.Google Scholar
  13. 13.
    L. Baringo, A. J. Conejo, “Wind power investment within a market environment,” Appl. Energy, vol. 88, no. 9, pp. 3239–3247, 2011.Google Scholar
  14. 14.
    C. Kongman and S. Nuchprayoon, “Feed-in tariff scheme for promoting wind energy generation,” in Proc. IEEE PowerTech, Bucharest, Romania, 2009.Google Scholar
  15. 15.
    R. A. F. Currie, G. W. Ault, R. W. Fordyce, D. F. MacLeman, M. Smith, and J. R. McDonald, “Actively managing wind farm power output,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1523–1524, 2008.Google Scholar
  16. 16.
    O. Samuelsson, S. Repo, R. Jessler, J. Aho, M. Karenlampi, and A. Malmquist, “Active distribution network—Demonstration project ADINE,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Oct. 2010.Google Scholar
  17. 17.
    M. J. Dolan et al., “Distribution power flow management utilizing an online optimal power flow technique,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 790–799, 2012.Google Scholar
  18. 18.
    F. Pilo, G. Pisano, and G. G. Soma, “Optimal coordination of energy resources with a two-stage online active management,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4526–4537, 2011.Google Scholar
  19. 19.
    A. Shafiu, T. Bopp, I. Chilvers, and G. Strbac, “Active management and protection of distribution networks with distributed generation”, in Proc. IEEE Power Eng. Soc. General Meeting, 2004.Google Scholar
  20. 20.
    R. Hidalgo, C. Abbey, and G. Joos, “Technical and economic assessment of active distribution network technologies,” in Proc. IEEE Power Energy Soc. General Meeting, 2011.Google Scholar
  21. 21.
    Z. Hu and F. Li, “Cost-benefit analyses of active distribution network management, part I: Annual benefit analysis,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1067–1074, Sep. 2012.Google Scholar
  22. 22.
    Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems” IET Renew. Power Gener., vol. 5, no. 1, pp. 79–88, 2011.Google Scholar
  23. 23.
    A. Rabiee, A. Soroudi, B. Mohammadi-Ivatloo, M. Parniani, “Corrective voltage control scheme considering demand response and stochastic wind power”, IEEE Trans. Power Syst., vol.29, no.6, pp. 2965–2973, 2014.Google Scholar
  24. 24.
    P. Siano, G. Mokryani, “Evaluating the benefits of optimal allocation of wind turbines for distribution network operators”, IEEE Syst. J., vol.9, no.2, pp. 629–638, 2015.Google Scholar
  25. 25.
    G. Mokryani, P. Siano, “Optimal wind turbines placement within a distribution market environment”, Applied Soft Computing, vol.13, no.10, pp. 4038–4046, 2013.Google Scholar
  26. 26.
    G. Mokryani, P. Siano, “Combined Monte Carlo simulation and OPF for wind turbines integration into distribution networks“, Electr. Power Syst. Res., vol.103, pp. 37–48, 2013.Google Scholar
  27. 27.
    G. Mokryani, P. Siano, A. Piccolo, “” “Optimal allocation of wind turbines in microgrids by using genetic algorithm”, Journal of Ambient Intelligence and Humanized Computing, vol. 4, no. 6, pp. 613–619, 2013.
  28. 28.
    P. Siano, G. Mokryani, “Assessing wind turbines placement in a distribution market environment by using particle swarm optimization”, IEEE Trans. Power Syst., vol.28, no.4, pp. 3852–3864, 2013.Google Scholar
  29. 29.
    N. Acharya, P. Mahat, and N. Mithulananthan, “An analytical approach for DG allocation in primary distribution network,” Int. J. Elect. Power & Energy Syst., vol. 28, no. 10, pp. 669–678, 2006.Google Scholar
  30. 30.
    M. Tsili, S. Papthanssiou, “A review of grid code technical requirements for wind farms, IET Renew. Power Gener., vol.3, no.3, pp. 308–332, 2009.Google Scholar
  31. 31.
    G. Mokryani, A. Majumdar, B.C. Pal, “A probabilistic method for the operation of three-phase unbalanced active distribution networks”, IET Renew. Power Gener, vol.10, no. 7, pp. 944 – 954, 2016.Google Scholar
  32. 32.
    G. Mokryani, Y.F. Hu , P. Pillai , H.S. Rajamani, “Active Distribution Networks Planning with High Penetration of Wind Power”, Renewable Energy, available online at:
  33. 33.
    Distributed Generation and Sustainable Electrical Energy Centre. United Kingdom Generic Distribution System (UKGDS). [Online]. Available:

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceUniversity of BradfordBradfordUK

Personalised recommendations