Dynamism in Vegetation. Vegetation Changes on a Short Time Scale

  • Javier LoidiEmail author
Part of the Plant and Vegetation book series (PAVE, volume 12)


The study of dynamic processes is one of the main issues in vegetation ecology. This chapter is an attempt to summarize the basic concepts to be applied when studying the dynamics of vegetation. As succession is the central process in vegetation dynamics, some relevant theories and models are explained, especially those concerning inhibition, facilitation and tolerance. Plant strategies related to dynamism, particularly those of r- and K-selection and Grime’s CRS model, are commented upon. Several types of succession are distinguished, and the concept of Vegetation Series (Sigmetum) is introduced, with comments on the diverse types, i.e. the climatophilous, edaphoxerophilous and edaphohygrophilous vegetation series. Also the sigmeta under extreme conditions are explained (permasigmeta or permaseries). Different disturbance regimes result in specific seral vegetation types and the persistence of these disturbance regimes shape the landscapes, particularly in heavily populated territories. The extant landscapes are a cultural construction in combination with the natural biotic element. In order to formalize a dynamic-catenal vegetation science, the concept of geoseries or geosigmetum is explained, separated into topographic geoseries (across an eco-topographic gradient) and cliserial geoseries (across an altitudinal gradient in mountains). Finally the zonations of permaseries (geopermasigmeta or geopermaseries) are discussed.


  1. Alcaraz F (1996) Fitosociología integrada, paisaje y biogeografía. In: Loidi J (ed) Avances en Fitosociología. Ed. UPV/EH, Bilbao, pp 59–94Google Scholar
  2. Burrows CJ (1990) Processes of vegetation change. Chapman & Hall, London, p 551Google Scholar
  3. Clements FE (1916) Plant succession: an analysis of the development of the vegetation. Publ. Carnegie Institute, Washington DC, p 515Google Scholar
  4. Clements FE (1928) Plant succession and indicators. Wilson, New YorkGoogle Scholar
  5. Connel JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144CrossRefGoogle Scholar
  6. de Bolòs O (1962) El paisaje vegetal barcelonés. Cátedra Ciudad de Barcelona, Excmo. Ayuntamiento, BarcelonaGoogle Scholar
  7. de Bolòs O (1963) Botánica y geografía. Mem Real Acad Ci Artes Barcelona 34:443–491Google Scholar
  8. Dierschke H (1994) Pflanzensoziologie. UTB. Verlag Eugen Ulmer, Stuttgart, p 683Google Scholar
  9. Egler FE (1954) Vegetation science concepts. I. Initial floristic composition, a factor in old-field vegetation development. Vegetatio 4:412–417CrossRefGoogle Scholar
  10. Géhu JM, Rivas-Martínez S (1981) Notions fondamentales de Phytosociologie. In: Dierscke H (ed) Sytaxonomie. Berlin International symposium IVV. Ed. Cramer, Vaduz, pp 5–53Google Scholar
  11. Glenn-Lewin DC, van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds) Plant succession. Theory and prediction. Chapman & Hall, London, pp 11–59Google Scholar
  12. Grime JP (1979) Plant strategies and vegetation processes. Wiley, London, p 222Google Scholar
  13. Grime JP (1985) Towards a functional description of vegetation. In: White J (ed) The population structure of vegetation, Handbook of vegetation science, vol 3, pp 503–514CrossRefGoogle Scholar
  14. Loidi J (1990) Vegetation series: its use for small scale geobotanical mapping. Phytocoenosis 3:119–122Google Scholar
  15. Loidi J, Báscones JC (1995) Memoria del mapa de series de vegetación de Navarra. Ed. Gobierno de Navarra, Pamplona, p 99Google Scholar
  16. Loidi J, del Arco M, Pérez de Paz PL, Asensi A, Díez Garretas B, Costa M, Díaz González TE, Izco J, Penas A, Rivas-Martínez S, Sánchez-Mata D (2010) Understanding properly the ‘potential natural vegetation’ concept. J Biogeogr 37:2209–2211CrossRefGoogle Scholar
  17. Loidi J, Fernández-González F (2012) Potential natural vegetation: reburying or reboring. J Veg Sci 23:596–604CrossRefGoogle Scholar
  18. Mac Arthur RH, Wilson ED (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  19. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270CrossRefPubMedGoogle Scholar
  20. Rivas-Martínez S (1976) Sinfitosociología, una nueva metodología para el estudio del paisaje vegetal. Anales Inst Bot Cavanilles 33:179–188Google Scholar
  21. Rivas-Martínez S (1978) Sobre las sinasociaciones de la Sierra de Guadarrama. In: Tüxen R (ed) Assoziationskomplexe (Sigmeten). Berlin international symposium IVV. Ed. Cramer, Vaduz, pp 189–212Google Scholar
  22. Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. ICONA, MadridGoogle Scholar
  23. Rivas-Martínez S (1994) Dinamic-zonal phytosociology as landscape science. Phytocoenologia 24:23–25CrossRefGoogle Scholar
  24. Rivas-Martínez S et al (2007) Mapa de series, geoseries y geopermaseries de vegetación de España [Memoria del mapa de vegetación potencial de España] Parte 1. Itinera Geobotanica 17:5–436Google Scholar
  25. Rivas-Martínez S et al (2011) Mapa de series, geoseries y geopermaseries de vegetación de España [Memoria del mapa de vegetación potencial de España] Parte 1. Itinera Geobotanica 18(1, 2):5–800Google Scholar
  26. Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew. Pflanzensoziologie 13:5–42. Stolzenau/WeserGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Plant Biology and EcologyUniversity of the Basque Country (UPV/EHU)BilbaoSpain

Personalised recommendations