Skip to main content

Optimal Bridge Displacement Controlled by Train Speed on Real-Time

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 2

Abstract

This paper aims to present a controller to optimize the lateral bridge displacement by controlling the speed of the train passing over it. The controller assumed for this purpose is a Linear Quadratic Regulator (LQR) controller. The results will be simulated based on and compared to the actual bridge displacement measured on the bridge during a train passing event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.fra.dot.gov/Page/P0362

  2. https://www.aar.org/todays-railroads

  3. Kim, R.E., Spencer Jr., B.F.: Modeling and Monitoring of the Dynamic Response of Railroad Bridges Using Wireless Smart Sensors. Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign (2015)

    Google Scholar 

  4. Lorieux, L.: Analysis of Train-Induced Vibrations on a Single-Span Composite Bridge. Department of Civil and Architectural Engineering, Division of Structural Design and Bridges, Royal Institute of Technology (KTH), Stockholm, Sweden (2008)

    Google Scholar 

  5. Miyashita, T., Ishii, H., Fujino, Y., Shoji, A., Seki, M.: Clarification of the effect of high-speed train induced vibrations on a railway steel box girder bridge using laser Doppler vibrometer. In: Proceedings of the International Conference on Experimental Vibration Analysis for Civil Engineering Structures, pp. 349–357 (2005)

    Google Scholar 

  6. Spencer Jr., B.F., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129(7), 845–856 (2003)

    Article  Google Scholar 

  7. Housner, G.W., Bergman, L., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., et al.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

    Article  Google Scholar 

  8. Park, K.T., Kim, S.H., Park, H.S., Lee, K.W.: The determination of bridge displacement using measured acceleration. Eng. Struct. 27(3), 371–378 (2005)

    Article  Google Scholar 

  9. Nakamura, S.I.: GPS measurement of wind-induced suspension bridge girder displacements. J. Struct. Eng. 126(12), 1413–1419 (2000)

    Article  Google Scholar 

  10. Dyke, S.J., Spencer Jr., B.F., Sain, M.K., Carlson, J.D.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565 (1996)

    Article  Google Scholar 

  11. Casciati, S., Chen, Z.: An active mass damper system for structural control using real-time wireless sensors. Struct. Control. Health Monit. 19(8), 758–767 (2012)

    Article  Google Scholar 

  12. Kim, J.T., Jung, H.J., Lee, I.W.: Optimal structural control using neural networks. J. Eng. Mech. 126(2), 201–205 (2000)

    Article  Google Scholar 

  13. Symans, M.D., Kelly, S.W.: Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems. Earthq. Eng. Struct. Dyn. 28(1), 37–60 (1999)

    Article  Google Scholar 

  14. Wang, X., Gordaninejad, F.: Lyapunov-based control of a bridge using magneto-rheological fluid dampers. J. Intell. Mater. Syst. Struct. 13(7–8), 415–419 (2002)

    Article  Google Scholar 

  15. Ruangrassamee, A., Kawashima, K.: Control of nonlinear bridge response with pounding effect by variable dampers. Eng. Struct. 25(5), 593–606 (2003)

    Article  Google Scholar 

  16. Gluck, N., Reinhorn, A.M., Gluck, J., Levy, R.: Design of supplemental dampers for control of structures. J. Struct. Eng. 122(12), 1394–1399 (1996)

    Article  Google Scholar 

  17. Erkus, B., Abé, M., Fujino, Y.: Investigation of semi-active control for seismic protection of elevated highway bridges. Eng. Struct. 24(3), 281–293 (2002)

    Article  Google Scholar 

  18. Lin, C.C., Wang, J.F., Chen, B.L.: Train-induced vibration control of high-speed railway bridges equipped with multiple tuned mass dampers. J. Bridg. Eng. 10(4), 398–414 (2005)

    Article  Google Scholar 

  19. Liu, J., Qu, W.L., Pi, Y.L.: Active/robust control of longitudinal vibration response of floating-type cable-stayed bridge induced by train braking and vertical moving loads. J. Vib. Control. 16(6), 801–825 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. https://www.google.com/maps/@41.6501474,-87.6210028,652m/data=!3m1!1e3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Garg, P., Ozdagli, A., Moreu, F. (2017). Optimal Bridge Displacement Controlled by Train Speed on Real-Time. In: Caicedo, J., Pakzad, S. (eds) Dynamics of Civil Structures, Volume 2 . Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54777-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54777-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54776-3

  • Online ISBN: 978-3-319-54777-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics