Skip to main content

Temperature Effects on the Modal Properties of a Suspension Bridge

  • Conference paper
  • First Online:
Book cover Dynamics of Civil Structures, Volume 2

Abstract

The paper studies temperature effects on the modal parameters of a suspension bridge across a Norwegian fjord. The approach used is a full-scale ambient vibration testing, where an automated Covariance-Driven Stochastic Subspace Identification (SSI-COV) method is used to identify the modal parameters. The bridge site, the bridge structure and the monitoring system are presented, followed by a summary of the data analysis procedure and the parameters used for the automated SSI-COV method applied. The operational modal analysis is based on 6 months of continuous acceleration records providing seasonal and diurnal variations of the natural frequencies of the bridge and the modal damping ratios. Temperature effects were observed with details that are scarcely available in the literature. In particular, the pronounced daily fluctuations of natural frequencies and seasonal effects are documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allemang, R.J., Brown, D.L.: A correlation coefficient for modal vector analysis. In: Proceedings of the 1st International Modal Analysis Conference, SEM, Orlando, vol.1, pp.110–116 (1982)

    Google Scholar 

  2. Brownjohn, J.M.W., Dumanoglu, A.A., Severn, R.T., Taylor, C.A.: Ambient vibration measurements of the Humber Suspension Bridge and comparison with calculated characteristics. Proc. Inst. Civil Eng. 83 (3), 561–600 (1987)

    Google Scholar 

  3. Brownjohn, J.M.W., Magalhaes, F., Caetano, E., Cunha, A.: Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Eng. Struct. 32 (8), 2003–2018 (2010). doi:10.1016/j.engstruct.2010.02.034

  4. Cheynet, E., Bogunovic’ Jakobsen, J., Snæbjörnsson, J.: Buffeting response of a suspension bridge in complex terrain. Eng. Struct. 128, 474–487 (2016). doi:10.1016/j.engstruct.2016.09.060

  5. de Battista, N., Brownjohn, J.M.W., Pink Tan, H., Koo, K.-Y.: Measuring and modelling the thermal performance of the Tamar Suspension Bridge using a wireless sensor network. Struct. Infrastruct. Eng. 11 (2), 176–193 (2015). doi:10.1080/15732479.2013.862727

  6. Ding, Y., Li, A.: Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge. Int. J. Steel Struct. 11 (2), 145–155 (2011). doi:10.1007/s13296-01120044

  7. Kim, C.-Y., Jung, D.-S., Kim, N.-S., Kwon, S.-D., Feng, M.Q.: Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration. Earthquake Eng. Eng. Vib. 2 (1), 109–115 (2003). doi:10.1007/BF02857543

  8. Koo, K.Y., Brownjohn, J.M.W., List, D.I., Cole, R.: Structural health monitoring of the Tamar suspension bridge. Struct. Control Health Monit. 20 (4), 609–625 (2013)

    Article  Google Scholar 

  9. Macdonald, J.H.G.: Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements. J. Wind Eng. Ind. Aerodyn. 91 (12–15), 1465–1483 (2003). doi:10.1016/j.jweia.2003.09.009. ISSN:0167-6105

  10. Magalhães, F., Cunha, À.: Explaining operational modal analysis with data from an arch bridge. Mech. Syst. Signal Process. 25 (5), 1431–1450 (2011). doi:10.1016/j.ymssp.2010.08.001. ISSN: 0888-3270

  11. Magalhães, F., Cunha, À., Caetano, E.: Online automatic identification of the modal parameters of a long span arch bridge. Mech. Syst. Signal Process. 23 (2), 316–329 (2009). doi:10.1016/j.ymssp.2008.05.003. ISSN: 0888-3270

  12. Sigbjörnsson, R., Hjorth-Hansen, E.: Along-wind response of suspension bridges with special reference to stiffening by horizontal cables. Eng. Struct. 3 (1), 27–37 (1981)

    Article  Google Scholar 

  13. Siringoringo, D.M., Fujino, Y.: System identification of suspension bridge from ambient vibration response. Eng. Struct. 30 (2), 462–477 (2008). doi:10.1016/j.ymssp.2008.05.003

  14. Sohn, H., Dzwonczyk, M., Straser, E.G., Kiremidjian, A.S., Law, K.H., Meng, T.: An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge. Earthquake Eng. Struct. Dyn. 28 (8), 879–897 (1999). ISSN: 1096-9845

    Google Scholar 

  15. Steigen, R.O.: Modeling and analyzing a suspension bridge in light of deterioration of the main cable wires. MA thesis. University of Stavanger (2011)

    Google Scholar 

  16. Strømmen, E.N.: Eigenvalue calculations of continuous systems. In: Structural Dynamics, pp.89–159. Springer International Publishing, Cham (2014). doi: 10.1007/9783319018027_3. ISBN: 978-3-319-01802-7

  17. Tveiten, J.: Dynamic analysis of a suspension bridge. MA thesis. University of Stavanger (2012)

    Google Scholar 

  18. Westgate, R., Koo, K.-Y., Brownjohn, J.: Effect of solar radiation on suspension bridge performance. J. Bridge Eng. 20 (5), 04014077 (2014). doi:10.1061/ (ASCE)BE.19435592.0000668

    Article  Google Scholar 

  19. Xia, Y., Chen, B., Weng, S., Ni, Y.Q., Xu, Y.L.: Temperature effect on vibration properties of civil structures: a literature review and case studies. J. Civ. Struct. Health Monit. 2 (1), 29–46 (2012). doi:10.1007/s13349- 01100157

  20. Xia, Y., Chen, B., Zhou, X.Q., Xu, Y.L.: Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior. Struct. Control Health Monit. 20 (4), 560–575 (2013). doi:10.1002/ stc.515

    Article  Google Scholar 

  21. Xu, Y.L., Chen, B., Ng, C.L., Wong, K.Y., Chan, W.Y.: Monitoring temperature effect on a long suspension bridge. Struct. Control Health Monit. 17 (6), 632–653 (2010). doi:10.1002/ stc.340

    Google Scholar 

  22. Zhou, L., Xia, Y., Brownjohn, J.M.W., Young Koo, K.: Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation. J. Bridge Eng. 21 (1), 04015027 (2016). doi:10.1061/ (ASCE)BE.19435592.0000786

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Norwegian Public Road Administration for the support of and the assistance during the measurement campaign at the Lysefjord Bridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Cheynet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Cheynet, E., Snæbjörnsson, J., Jakobsen, J.B. (2017). Temperature Effects on the Modal Properties of a Suspension Bridge. In: Caicedo, J., Pakzad, S. (eds) Dynamics of Civil Structures, Volume 2 . Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54777-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54777-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54776-3

  • Online ISBN: 978-3-319-54777-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics