• Lucy Fowkes
  • Kate NewboldEmail author
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)


Worldwide, cancer is a major public health issue and accurate diagnosis, staging and follow-up is essential for optimal management. PET-CT imaging has a significant role in the staging of disease and assessment of treatment response.


Clinical Target Volume Gross Tumour Volume Major Public Health Issue Dose Painting Biological Target Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Berthelsen AK, Dobbs J, Kjellen E, et al. What’s new in target volume definition for radiologists in ICRU report 71? How can the ICRU volume definitions be integrated in clinical practice? Cancer Imaging. 2007;7:104–16.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med. 2009;50(1):88–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Nestle U, Walter K, Schmidt S, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys. 1999;44(3):593–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Antoch G, Saoudi N, Kuehl H, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol. 2004;22(21):4357–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol. 2011;21(2):101–10.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McConathy J, Goodman MM. Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev. 2008;27(4):555–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I. Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Med. 2010;51(6):837–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Oborski MJ, Laymon CM, Lieberman FS, Drappatz J, Hamilton RL, Mountz JM. First use of (18)F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy. Brain Behav. 2014;4(2):312–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med. 2013;54(6):903–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Haubner R. PET radiopharmaceuticals in radiation treatment planning—synthesis and biological characteristics. Radiother Oncol. 2010;96(3):280–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Grassi I, Nanni C, Allegri V, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.PubMedGoogle Scholar
  15. 15.
    Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging. 2010;37(10):2004–10.Google Scholar
  16. 16.
    Giraud P, Elles S, Helfre S, et al. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol. 2002;62(1):27–36.CrossRefPubMedGoogle Scholar
  17. 17.
    Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ. A review on segmentation of positron emission tomography images. Comput Biol Med. 2014;50:76–96.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheebsumon P, Boellaard R, de Ruysscher D, et al. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. Eur J Nucl Med Mol Imaging. 2012;2(1):56.Google Scholar
  19. 19.
    Frings V, Van Velden FH, Velasquez LM, et al. Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology. 2014;273(2):539–48.CrossRefPubMedGoogle Scholar
  20. 20.
    Thorwarth D, Leibfarth S, Monnich D. Potential role of PET/MRI in radiotherapy planning. Clin Transl Imaging. 2013;1:45–51.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Radiology & Radionuclide RadiologyThe Royal Marsden NHS Foundation TrustLondonUK
  2. 2.Head & Neck and Thyroid UnitThe Royal Marsden NHS Foundation Trust and Institute of Cancer ResearchLondonUK
  3. 3.Clinical OncologyThe Royal Marsden NHS Foundation TrustLondonUK

Personalised recommendations