Skip to main content

Piers, Walls, Buttresses and Towers

  • Chapter
  • First Online:
Statics of Historic Masonry Constructions

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 9))

  • 1206 Accesses

Abstract

This chapter is addressed to the structural analysis under vertical loads of walls, piers, buttresses and towers. For them, the non-linear interaction between the destabilizing effects of the axial loads and the masonry no-tension response can be very strong. Instability analysis of the masonry pier under an eccentric axial load is firstly studied in the wake of a significant study of Yokel. The strong sensitivity of the pier strength to the eccentricity of the load is pointed out and comparisons are made with the case of reinforced concrete columns. Statics of buttresses as of retaining walls is also developed in the chapter. For these structural systems the occurrence of inclined lines of cracks has a not negligible influence on their strength. Static analysis of building masonry walls is then examined. For them the presence of offsets of the wall thickness at the various stories plays a relevant role. Instability of towers whose behavior can be strongly influenced by foundation deformability, is analyzed at the end of the section. Special attention has been given to the stability analysis of the Pisa Tower, which recently underwent an outstanding restoration work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burland, J. B. (1998). The enigma of the leaning of the tower of Pisa. The sixth Spencer J. Buchanam Lecture. Texas A&M University.

    Google Scholar 

  • Burland, J. B., Jamiolkowski, M., & Viggiani, C. (1999). The restoration of the leaning tower of Pisa: Geotechnical Aspects. Workshop on the Restoration of the Leaning Tower of Pisa, Pre–print (Vol. 1). Pisa.

    Google Scholar 

  • Cervenka, V., & Cervenka, J. (2002). Atena program documentation. User’s manual for Atena 2D. Prague.

    Google Scholar 

  • Como, M. (1993). Plastic and visco–plastic stability of leaning towers. In G. Ferrarese (Ed.), Fisica mathematica e Ingegneria: rapporti e compatibilità, Conv. Intern. in memoria di G. Krall, Isola d’Elba, June 10–14, 1993, Pitagora ed., Bologna.

    Google Scholar 

  • Como, M., & Ianniruberto, U. (1995). Sulla resistenza laterale di pilastri caricati assialmente e costituiti da materiale elastico–non resistente a trazione. XII Congresso Naz. AIMETA ‘95, 3–6 Oct., Naples.

    Google Scholar 

  • Como, M.T. (2000). II Restauro dei Monumenti a Torre in muratura. Restauro (pp. 152–153). Naples: Edizioni Scientifiche Italiane.

    Google Scholar 

  • Como, M., Ianniruberto, U., & Imbimbo, M. (2001). A rigid plastic model of the under–excavation technique applied to stabilize leaning towers. In P. B. Lourenço & P. Roca (Eds.), Constructions. Guimarães.

    Google Scholar 

  • De Falco, A., Lucchesi, M. (2000). Stability of no-tension beam–columns with bounded compressive strength. In Proceedings of IASS–IACM 2000, Fourth international colloquium on computation of shell and spatial structures, June 4–7, Chania Crete, Greece.

    Google Scholar 

  • De Falco, A., & Lucchesi, M. (2003). Explicit solutions for the stability of no–tension beam–columns. International Journal of Structural Stability and Dynamics, 3, 2.

    Article  MATH  Google Scholar 

  • De Fez, A. (1992). In Ed. Liguori (Ed.), II consolidamento degli edifici. Naples.

    Google Scholar 

  • Desideri, A., Russo, G., & Viggiani, C. (1997). La stabilità di torri su terreno deformabile. Rivista Italiana di Geotecnica, 1/97.

    Google Scholar 

  • De Witte, F. C., & Kikstra, W. P. (2000–2010). Diana User’s Manual, Nonlinear Analysis., Delft, Netherlands.

    Google Scholar 

  • Edmunds, H. E. (1993). The Use of Underexcavation as a means of stabilising the leaning tower of Pisa: Scale and model tests. MSc thesis, Department of Civil Engineering, Imperial College of Science, Technology and Medicine. London.

    Google Scholar 

  • Frisch-Fay, R. (1975). Stability of masonry piers. International Journal of Solids and Structures, 11, 2.

    Google Scholar 

  • Giuffrè, A. (1990). Letture sulla Meccanica delle Murature Storiche. Faculty of Architect. Rome: University of Rome “La Sapienza”.

    Google Scholar 

  • Hambly, E. C. (1985). Soil buckling and the leaning instability of tall structures, The Structural Engineer, 63A(3).

    Google Scholar 

  • Heyman, J. (1992). Leaning towers. Meccanica (Vol. 7, p. 3). Dordrech: Kluwer Academic Publishers.

    Google Scholar 

  • Jamiolkowski, M., Burland, J. B., & Viggiani, C. (2003). The stabilisation of the leaning Tower of Pisa. Soil and Foundations, 43(5).

    Google Scholar 

  • Krall, G. (1947). Statica dei mezzi elastici cosiddetti viscosi e sue applicazioni. Acc. Naz. le dei Lincei, fasc. 3–4, Rome.

    Google Scholar 

  • La Mendola, L., & Papia, M. (1993). Stability of masonry piers under their own weight and eccentric load. Journal of Structural Engineering, 119, 6.

    Article  Google Scholar 

  • Lancellotta, R. (1993). The stability of a rigid column with non–linear restraint. Geotechnique, 2.

    Google Scholar 

  • Lancellotta, R. (2013). La Torre Ghirlandina: una storia di interazione terreno—struttura. XI Croce Lecture, Rivista Ital. di Geotecnica (Vol. XLVII, p. 2).

    Google Scholar 

  • Meyerhof, G. G. (1951). Ultimate bearing capacity of foundations. Geotechnique, 2(3).

    Google Scholar 

  • Napoli, P. (1992). Modellazione numerica della interazione struttura—suolo. Department of Structural Engineering. Politecnico di Turin.

    Google Scholar 

  • Nova, R., & Montrasio, L. (1995). Un’analisi di stabilità del campanile di Pisa. Rivista It. di Geotecnica (Vol. 2).

    Google Scholar 

  • Nuove Norme Tecniche sulle Costruzioni. (2008–2009). Ministero delle Infrastrutture e dei Trasporti, D.M. Infrastrutture n. 617/C. S.LL.PP., 14.01.2008 e Circ. 02.02.2009.

    Google Scholar 

  • Ochsendorf, J., Hernando, I., & Huerta, S. (2004). Collapse of Masonry Buttresses. The Journal of Architectural Engineering, 10, 3.

    Article  Google Scholar 

  • Prager, W. (1959). An introduction to plasticity. Reading, Mass, U.S.A.: Addison-Wesley Publishing.

    Google Scholar 

  • Shrive, N. G., England, G. L. (1981). Elastic, creep and shrinkage behavior of masonry. International Journal of Masonry Construction, 1(3).

    Google Scholar 

  • Spiegel, M. R. (1968). Mathematical handbook. Schaum’s outline series. New York: McGraw Hill Book Company.

    Google Scholar 

  • Spiegel, M. R. (1981). Advanced mathematics for engineers and scientists, Shaum’s ouline series. New York: McGraw Hill Book Company.

    Google Scholar 

  • Tamez, E., Ovando, E., & Santoyo, E. (1997). Under-excavation of Mexico City’s Metropolitan Cathedral and Sagrario Church. In Proceedings of 14th international conference on soil mechanics & foundation engineering (Vol. 4).

    Google Scholar 

  • Terracina, F. (1962). Foundations of the Tower of Pisa. Geotechnique, 12, 4.

    Article  Google Scholar 

  • Terzaghi, K. (1943). Theoretical soil mechanics. New York: Wiley.

    Book  Google Scholar 

  • Terzaghi, K., & Peck, R. B. (1967). Soil mechanics in engineering practice (2nd ed.). New York: Wiley.

    Google Scholar 

  • Yokel, F.Y. (1971). Stability and load capacity of members with no tensile strength. Proc. ASCE, 87, ST7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Como .

Appendix

Appendix

Integration of the Yokel differential equation

By means of Eq. (9.15), we obtain

$$\frac{d}{dx}(\frac{dy}{dx})^{2} = \frac{2dy}{dx} \cdot \frac{{d^{2} y}}{{dx^{2} }} = \frac{{2k_{1} }}{{\left( {u_{0} + y} \right)^{2} }} \cdot \frac{dy}{dx}$$

and

$$(\frac{dy}{dx})^{2} = 2k_{1} \int {\frac{dy}{{(u_{0} + y)^{2} }} = - 2k_{1} \frac{1}{{u_{0} + y}} + c_{1} } .$$
$${\text{For}}\,y \to 0,{\text{we}}\,{\text{have}}\,dy/dx \to 0\,{\text{and}}\,{\text{consequently}}\,c_{1} = 2k_{1} /u_{0} ,$$

and

$$(\frac{dy}{dx})^{2} = 2k_{1} (\frac{1}{{u_{0} }} - \frac{1}{{u_{0} + y}}) = \frac{{2k_{1} }}{{u_{0} }} \cdot \frac{y}{{u_{0} + y}},$$

hence

$$\frac{dy}{dx} = \pm \sqrt {\frac{{2k_{1} }}{{u_{0} }}} \cdot (\frac{y}{{u_{0} + y}})^{1/2} .$$
(9.194)

With the position

$$k_{2} = \sqrt {\frac{{2k_{1} }}{{u_{0} }}} = \frac{2}{3}\sqrt {\frac{P}{{Ebu_{0} }}} ,$$
(9.195)

Equation (9.194) becomes:

$$\frac{dy}{dx} = \pm k_{2} (\frac{y}{{u_{0} + y}})^{1/2}$$

or

$$dx = \pm \frac{1}{{k_{2} }}(\frac{{u_{0} + y}}{y})^{1/2} \cdot dy.$$

Integration yields

$$x = \pm \frac{1}{{k_{2} }}\int {(\frac{{u_{0} + y}}{y})^{1/2} dy}$$

and, consequently

$$\int {(\frac{{u_{0} + y}}{y})}^{1/2} dy = \sqrt {y\left( {u_{0} + y} \right)} + \frac{{u_{0} }}{2}\int {\frac{dy}{{\sqrt {y\left( {u_{0} + y} \right)} }}} = \sqrt {y\left( {u_{0} + y} \right)} + u_{0} \ln (\sqrt y + \sqrt {u_{0} + y} ),$$

hence

$$x = \pm \frac{1}{{k_{2} }}\left[ {\sqrt {y\left( {u_{0} + y} \right)} + u_{0} \ln \left( {\sqrt y + \sqrt {u_{0} + y} } \right)} \right] + c_{2} .$$

By accounting that at x = 0, y = 0, we get:

$$c_{2} = - \frac{{u_{0} }}{{k_{2} }}\ln \sqrt {u_{0} }$$

and

$$x = \pm \frac{1}{{k_{2} }}[\sqrt {y\left( {u_{0} + y} \right)} + u_{0} \ln \frac{{\sqrt y + \sqrt {u_{0} + y} }}{{\sqrt {u_{0} } }}].$$
(9.196)

Substituting (9.196) into (9.195) of k 2 furnishes:

$$x = \pm \frac{3}{2}\sqrt {\frac{{Ebu_{0} }}{P}} \cdot [\sqrt {y\left( {u_{0} + y} \right)} + u_{0} \ln \frac{{\sqrt y + \sqrt {u_{0} + y} }}{{\sqrt {u_{0} } }}].$$

By considering that for x = h/2, y = u 1  − u 0 , the solution is expressed in terms of u 1 :

$$\frac{h}{2} = \pm \frac{3}{2}\sqrt {\frac{{Ebu_{0} }}{P}} \cdot [\sqrt {u_{1} \left( {u_{1} - u_{0} } \right)} + u_{0} \ln \sqrt {\frac{{u_{1} - u_{0} }}{{u_{0} }}} + \sqrt {\frac{{u_{1} }}{{u_{0} }}} ],$$

and hence

$$P = \frac{{9Ebu_{0} }}{{h^{2} }} \cdot [\sqrt {u_{1} \left( {u_{1} - u_{0} } \right)} + u_{0} \ln (\sqrt {\frac{{u_{1} - u_{0} }}{{u_{0} }}} + \sqrt {\frac{{u_{1} }}{{u_{0} }}} )]^{2} .$$

With the position

$$\alpha = u_{0} /u_{1} ,$$
(9.197)

we finally arrive at

$$P = \frac{{9Ebu_{1}^{3} }}{{h^{2} }} \cdot \alpha \cdot [\sqrt {1 - \alpha } + \alpha \,\ln (\sqrt {\frac{1 - \alpha }{\alpha }} + \sqrt {\frac{1}{\alpha }} )]^{2} .$$
(9.198)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Como, M. (2017). Piers, Walls, Buttresses and Towers. In: Statics of Historic Masonry Constructions. Springer Series in Solid and Structural Mechanics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-54738-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54738-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54737-4

  • Online ISBN: 978-3-319-54738-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics