Skip to main content

Masonry Buildings Under Seismic Actions

  • Chapter
  • First Online:
Statics of Historic Masonry Constructions

Part of the book series: Springer Series in Solid and Structural Mechanics ((SSSSM,volume 9))

Abstract

This last chapter deals with the study of the seismic behaviour of historic masonry buildings. Starting point of the chapter is the remark that traditional masonry buildings have not been built to offer any resistance to horizontal actions. This is why most of the seismic damage occurs in old historic centres, as well as why there is currently such a great demand to determine the most suitable means to reinforce them. The first sections of the chapter are focused to point out that, contrariwise to steel or reinforced concrete structures, that can oppose the seismic action by using their ductility, masonry constructions don’t dissipate energy during their deformation, even if accompanied by cracks. If properly reinforced, to avoid early local failures, masonry constructions have the sole resource to escape the seismic action exhibiting rocking without failure, under alternate seismic action. A constant acceleration impulse, of a suitable duration, can represent the seismic action. A masonry pier wall, the basic resistant element of a masonry building, overturns under an acceleration impulse A o of suitable duration t o that turns out to be quite larger than the limit acceleration A L producing the statical collapse. The magnitude of the so-called reduced strength factor q = Ao/A L —the ratio between the above accelerations—can measure the actual capacity of the construction to follow the alternate seismic action exhibit rocking without overturning, over the whole duration of the quake. Due to the actual quite low values of this so defined reduced strength factor q, as shown in the chapter, the seismic protection of historic masonry constructions requires design criteria where strength has to be dominant. A first focal point is thus the analysis of the chain of transmission of the seismic forces along the resistant structure of the construction. The weak rings of this chain are thus pointed out: they are due to the natural lack of connection among the various components of the building structure. Suitable primary reinforcements, discussed in the chapter, have to be inserted in the structure to ensure that early local failures cannot occur. The out-plane and the in-plane strength of masonry walls is then evaluated, with new elaborations and inclusions. All the results presented have been obtained in the framework of the Limit Analysis of masonry structures, according to the approach followed in the book. Numerical examples and comparisons with Code prescriptions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abruzzese, D., Como, M., & Grimaldi, A. (1986). Analisi limite degli edifici murari sotto spinte orizzontali. Rome: Atti Dipartimento di Ingegneria Civile, Università di Roma Tor Vergata, Rome.

    Google Scholar 

  • Abruzzese, D., Como, M., & Lanni, G. (1992). On the lateral strength of multistory masonry walls with openings and horizontal reinforcing connections. In Proceedings of the Tenth World Conference on Earthquake Engineering (pp. 4525–4530). Balkema: Rotterdam.

    Google Scholar 

  • Al Shawa, O., Liberatore, D., & Sorrentino, L. (2015). Valutazione Normativa della Sicurezza per Meccanismi Locali di Collasso di Pareti Murarie. 16° Conv. Anidis ‘‘L’ingegneria sismica in Italia’’. L’Aquila 13–17 settembre, paper 2225.

    Google Scholar 

  • Aoyama, H. (1981). Outline of earthquake provisions in the recently revised Japanese building code. Bulletin of the New Zealand Society for Earthquake Engineering, 14(2).

    Google Scholar 

  • Braga, F., & Dolce, M. (1982). A method for analysis of antiseismic masonry multistory buildings. In 6th I.B.MA.

    Google Scholar 

  • Calderoni, B., Ghersi, A., & Lenza, P. (2015). Edifici in Muratura alla luce della nuova normative sismica, ed. Flaccovio, Palermo.

    Google Scholar 

  • Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis for estimating seismic demands for building. Earthquake Engineering and Structural Dynamics, 31.

    Google Scholar 

  • Coccia, S., Di Carlo, F., & Imperatore, S. (2016a). Force reduction factor for out of plane simple mechanism of masonry structures. Bulletin of Earthquake Engineering, 14(9).

    Google Scholar 

  • Coccia, S., Como, M., & Di Carlo, F. (2016b). In-plane strength under seismic forces of multi-storey masonry walls reinforced by steel ties. In 16th International Brick and Block Masonry Conference, June 26–30, Padova.

    Google Scholar 

  • Coccia, S., Como, M., & Di Carlo, F. (2017). Rocking of vertical masonry piers in presence of diagonal cracking. Bologna: MuRiCo (in press).

    Google Scholar 

  • Como, M., & Lanni, G. (1981). Elementi di Costruzioni Antisismiche, Ed. Cremonese, Rome.

    Google Scholar 

  • Como, M., & Grimaldi, A. (1983). Analisi limite di pareti murarie sotto spinta. Università di Napoli, Atti Istituto di Tecnica delle costruzioni, n. 546, Naples.

    Google Scholar 

  • Como, M., & Grimaldi, A. (1985). An unilateral model for the limit Analysis of masonry walls. In Proceedings of the 2nd meeting in unilateral problems in structural analysis, Ravello, 22–24 Sept. 1983. CISM Courses and Lectures (vol. 288). New York: Springer.

    Google Scholar 

  • Como, M., Lanni, G., & Sacco, E. (1991). Sul calcolo delle catene di rinforzo negli edifici in muratura soggetti ad azione sismica”, V° Conf. Naz.le “L’Ingegneria sismica in italia. ANIDIS, Facoltà di Ingegneria, Università di Palermo.

    Google Scholar 

  • Como, M. (2006). Modellazioni semplici per l’analisi della resistenza sismica degli edifici in muratura. Atti del Workshop WONDERMasonry 2006, Dipartimento di Ingegneria Civile, Università di Firenze, Edizioni Polistampa, Florence.

    Google Scholar 

  • D’Ayala, D., & Speranza, E. (2003). Definition of collapse mechanisms and seismic vulnerability of historic masonry buildings. Earthquake Spectra, 19(3).

    Google Scholar 

  • Di Carlo, F. (2015). Strength reduction for rocking masonry structures. Ph.D. Thesis, Department of Civil Engineering and Computer Science, January 2015.

    Google Scholar 

  • Di Pasquale, S. (1982). Architettura e Terremoti, Restauro, n. 59 – 60 – 61.

    Google Scholar 

  • Fajfar, P. (1999). Capacity Spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 28.

    Google Scholar 

  • Fusier, F., & Vignoli, A. (1993). Proposta di un metodo di calcolo per edifici in muratura sottoposti ad azioni orizzontali. Anno X: Ingegneria sismica. 1.

    Google Scholar 

  • Galasco, A., Lagomarsino, S., & Penna, A., (2002). TREMURI program: seismic analyzer of 3D masonry program. Università di Genova.

    Google Scholar 

  • Galasco, A., Lagomarsino, S., & Penna, A. (2006). On the use of pushover analysis for existing masonry buildings. In 1st ECEES, Geneva.

    Google Scholar 

  • Ghersi, A., & Lenza, P. (2016). Edifici antisismici in cemento armato, Dario Flaccovio ed. Palermo.

    Google Scholar 

  • Giuffrè, A. (1988). Monumenti e Terremoti, aspetti statici del restauro. Scuola di Specializzazione per lo Studio ed il Restauro dei Monumenti, Multigrafica Editrice, Rome.

    Google Scholar 

  • Housner, G. W. (1959). Behavior of structures during earthquakes. Journal of Engineering Mechanics Division ASCE, 85(EM4).

    Google Scholar 

  • Housner, G. W. (1963). The behaviour of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 55(2).

    Google Scholar 

  • Liberatore, D., Spera, G., D’Alessandro, G., & Nigro, D. (2002). Rocking of slender blocks subjected to seismic motion of the base. In 12th European Conference on Earthquake Engineering, London, 9–13, September, 2002.

    Google Scholar 

  • Magenes, G., & Della Fontana, A. (1998). Simplified non linear seismic analysis of masonry buildings. Proceedings of the British Masonry Society, 8.

    Google Scholar 

  • Newmark, N. M., & Rosenblueth, E. (1971). Fundamentals of earthquake engineering. Englewood Cliffs, NY: Prentice Hall.

    Google Scholar 

  • Newmark, N., & Hall, W. (1982). Earthquake spectra and design. Monograph, Earthquake Engineering Research Institute, Oakland, CA, USA

    Google Scholar 

  • DM 1996, Norme Tecniche 16.01.1996, and CM n.65 10.04.1997.

    Google Scholar 

  • NTC 2009, DM 14.01.2008.

    Google Scholar 

  • Park, R., & Paulay, T. (1975). Reinforced concrete structures. New York: Wiley.

    Google Scholar 

  • Petrini, L., Pinho, R., & Calvi, G.M. (2006). Criteri di progettazione antisismica degli edifici. IUSS Press.

    Google Scholar 

  • Paulay, T., & Priestley, M. J. N. (1992). Seismic design of reinforced concrete and masonry buildings. New York: Wiley.

    Google Scholar 

  • Priestley, M. J. N., Calvi, G. M., & Kowalsky, M. J. (2007). Displacement-based seismic design of structures. IUSS Press.

    Google Scholar 

  • Ruggieri, N. (2015). L’ingegneria antisismica nel Regno di Napoli, Ed. Aracne, Roma.

    Google Scholar 

  • Ruffolo, F. (1912). La stabilità sismica dei fabbricati, Casa editrice “L’Elettricista”, Rome.

    Google Scholar 

  • Timoshenko, S., & Young, D.H. (1948). Advanced dynamics. New York: Mc Graw Hill.

    Google Scholar 

  • Tomazevic, M. (1978). The Computer Program POR, Report ZRMK. Institute for Testing and Research in Materials and Structures, Ljubljana.

    Google Scholar 

  • Yim, C. S., Chopra, A. K., Penzien, J., (1980). Rocking Response of rigid blocks to earthquakes. Earthquake Engineering and Structural Dynamics, 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Como .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Como, M. (2017). Masonry Buildings Under Seismic Actions. In: Statics of Historic Masonry Constructions. Springer Series in Solid and Structural Mechanics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-54738-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54738-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54737-4

  • Online ISBN: 978-3-319-54738-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics