Skip to main content

Vibration Suppression of MR Sandwich Beams Based On Fuzzy Logic

  • Conference paper
  • First Online:
Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9

Abstract

In this paper, the vibration suppression capabilities of magnetorheological (MR) layer in smart beams is investigated. A three-layered beam including MR elastomer layer sandwiched between two elastic layers is considered. By assuming the properties of MR layer in the pre-yield region as viscoelastic materials behavior, the governing equations of motion as well as the corresponding boundary conditions are derived using Hamilton’s principle. Due to field-dependent shear modulus of MR layer, the stiffness and damping properties of the smart beam can be changed by the application of magnetic field. This feature is utilized to suppress the unwanted vibration of the system. The appropriate magnetic field applied over the beam is chosen through a fuzzy controller for improving the transient response. The designed fuzzy controller uses the modal displacement and modal velocity of the beam as its inputs. Free and forced vibration of smart sandwich beam is investigated using numerical simulations. The results show that the magnetorheological layer along with the designed fuzzy controller can be effectively used to suppress the unwanted vibration of the system. The qualitative and quantitative knowledge resulting from this research is expected to enable the analysis, design and synthesis of smart beams for improving the dynamic performance of smart engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlson, J.D.: Portable controllable fluid rehabilitation devices, Google Patents, 1998

    Google Scholar 

  2. Carlson, J.D., Catanzarite, D., Clair, K.S.: Commercial magneto-rheological fluid devices. Int. J. Mod. Phys. B. 10(23–24), 2857–2865 (1996)

    Article  Google Scholar 

  3. Carlson, J.D., Chrzan, M.J., James, F.O.: Magnetorheological fluid devices, Google Patents, 1995

    Google Scholar 

  4. Ginder, J.M., Nichols, M.E., Elie, L.D., Tardiff, J.L.: Magnetorheological elastomers: properties and applications. In: Proceeding of International Society for Optics and Photonics 1999, pp. 131–138.

    Google Scholar 

  5. Ginder, J.: Rheology controlled by magnetic fields. Encycl. Appl. Phys. 16, 487–503 (1996)

    Google Scholar 

  6. DiTaranto, R.: Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. J. Appl. Mech. 32(4), 881–886 (1965)

    Article  Google Scholar 

  7. A.H. Ghasemi, M.H. Ghaffari Saadat, A.R. Ohadi, Vibration control of a rotor-bearing system with smart bearings using magnetorheologic fluids. In: Proceeding of 15th International Congress on Sound and Vibrations, Daejeon, Korea, 3029–3036, 2008.

    Google Scholar 

  8. Mead, D., Markus, S.: The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib. 10(2), 163–175 (1969)

    Article  MATH  Google Scholar 

  9. Yalcintas, M., Dai, H.: Magnetorheological and electrorheological materials in adaptive structures and their performance comparison. Smart Mater. Struct. 8(5), 560 (1999)

    Article  Google Scholar 

  10. Sung, Q., Zhou, J.-X., Zhang, L.: An adaptive beam model and dynamic characteristics of magnetorheological materials. J. Sound Vib. 261(3), 465–481 (2003)

    Article  Google Scholar 

  11. Yeh, Z.-F., Shih, Y.-S.: Dynamic characteristics and dynamic instability of magnetorheological material-based adaptive beams. J. Compos. Mater. 40, 1333–1359 (2006)

    Article  Google Scholar 

  12. Rajamohan, V., Rakheja, S., Sedaghati, R.: Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid. J. Sound Vib. 329, 3451–3469 (2010)

    Article  Google Scholar 

  13. Rajamohan, V., Sedaghati, R., Rakheja, S.: Vibration analysis of a multi-layer beam containing magnetorheological fluid. Smart Mater. Struct. 19, 015013 (2009)

    Article  Google Scholar 

  14. Lara-Prieto, V., Parkin, R., Jackson, M., Silberschmidt, V., Zbigniew, K.: Vibration characteristics of MR cantilever sandwich beams: experimental study. Smart Mater. Struct. 19, 015005 (2009)

    Article  Google Scholar 

  15. Rahn, C.D., Joshi, S.: Modeling and control of an electrorheological sandwich beam. J. Vib. Acoust. 120(1), 221–227 (1998)

    Article  Google Scholar 

  16. Wang, K., Kim, Y., Shea, D.: Structural vibration control via electrorheological-fluid-based actuators with adaptive viscous and frictional damping. J. Sound Vib. 177(2), 227–237 (1994)

    Article  MATH  Google Scholar 

  17. Chrzan, M.J., Carlson, J.D.: MR fluid sponge devices and their use in vibration control of washing machines. In: Proceeding of SPIE, 370–378, 2001

    Google Scholar 

  18. Bajkowski, J.M., Dyniewicz, B., Bajer, C.I.: Semi-active damping strategy for beams system with pneumatically controlled granular structure. Mech. Syst. Signal Process. 70, 387–396 (2016)

    Article  Google Scholar 

  19. Rao, S.S.: Vibration of Continuous Systems, Wiley, New York. (2007)

    Google Scholar 

  20. Weiss, K.D., Carlson, J.D., Nixon, D.A.: Viscoelastic properties of magneto-and electro-rheological fluids. J. Intell. Mater. Syst. Struct. 5(6), 772–775 (1994)

    Article  Google Scholar 

  21. Li, W., Du, H., Chen, G., Yeo, S., Guo, N.: Nonlinear rheological behavior of magnetorheological fluids: step-strain experiments. Smart Mater. Struct. 11(2), 209 (2002)

    Article  Google Scholar 

  22. Aliakbari, N., Khadembashi, M., Moeenfard, H., Ghasemi, A.H.: An optimal fuzzy controller stabilizing the rod and controlling the position of single wheeled inverted pendulums, In: Proceeding of Ameircan Control Conference, 2016

    Google Scholar 

  23. Khademshai, M., Moeenfard, H., Ghasemi, A.H.: Deflection control of electrostatically actuated mico cantilvers via fuzzy controller. In: Proceeding of Dynamic Systems and Control Conference, 2016

    Google Scholar 

  24. Radgolchin, M., Moeenfard, H., Ghasemi, A.H.: A two-level adaptive fuzzy control algorithm for beyond pull-in stabilization of electrostatically actuated microplate. In: Proceeding of Dynamic Systems and Control Conference, 2016

    Google Scholar 

  25. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in Fortran 77: The Art of Scientific Computing, p. 933. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Moeenfard .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section, we present the free response of a sandwiched beam with arbitrary boundary conditions. The characteristic Eq. (24.26) is a sixth-order polynomial which can be rewritten as

$$ {\delta}^3+{G}_0\left(I-1\right){\delta}^2-{\omega}_n^2\delta -{G}_0I{\omega}_n^2=0 $$
(24.32)

where

$$ \delta ={\lambda}^2 $$
(24.33)

The roots of the Eq. (24.32) is described in [25]. The general solution of the system is expressed as

$$ \left\{\begin{array}{c}\hfill w\left(x,t\right)={e}^{i{\omega}_nt}\sum_{i=1}^6{c}_i{\mathrm{e}}^{\lambda_ix}\kern0.75em \hfill \\ {}\hfill u\left(x,t\right)={e}^{i{\omega}_nt}\sum_{i=1}^6{R}_i{c}_i{\mathrm{e}}^{\lambda_ix}\hfill \end{array}\right. $$
(24.34)

where for i = 1,2,···,6, λ i are the roots of the characteristic equation. Substituting Eq. (24.34) into the boundary conditions Eqs. (24.17), (24.18), and (24.19) yields a matrix equation

$$ \sum_{j=1}^6{a}_{ij}{c}_j=0\kern3em i=1,\dots, 6 $$
(24.35)

where

$$ \begin{array}{l}{a}_{1j}=1\kern0.5em ,\kern0.75em {a}_{2j}={\lambda}_j\kern0.5em ,\kern0.5em {a}_{3j}={R}_j\kern0.5em ,\kern0.75em {a}_{4j}={\lambda}_j^2{e}^{\lambda_j},\kern0.5em \\ {}{a}_{5j}={R}_j{\lambda}_j{e}^{\lambda_j}\kern0.5em ,\kern1em {a}_{6j}=G\left({R}_j+{\lambda}_j\right)-{\lambda}_j^3\end{array} $$
(24.36)

for j = 1,…,6, and R n is given in Eq. (24.25). The natural frequencies ω n and the solutions of the characteristic equation Eq. (24.26) can be obtained by equating the coefficient matrix zero in Eq. (24.35).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Malaeke, H., Moeenfard, H., Ghasemi, A.H., Baqersad, J. (2017). Vibration Suppression of MR Sandwich Beams Based On Fuzzy Logic. In: Harvie, J., Baqersad, J. (eds) Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54735-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54735-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54734-3

  • Online ISBN: 978-3-319-54735-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics