Skip to main content

The DNA from a Coding Perspective

  • Chapter
  • First Online:
Information- and Communication Theory in Molecular Biology

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 1012 Accesses

Abstract

The general aim of the project was to investigate and understand the coding structure in the DNA by using information theoretic, coding, and communication tools along with molecular genetics approaches. The codon encoding structure and possible mutations are modeled as a communication channel to investigate and obtain a clearer view on the codon to amino acid mappings. In addition, principles observed in the DNA are transferred into technical source coding methods. The universal source coding algorithms proposed by Lemple and Ziv in 1977 and 1978 and by Welch in 1984 actually show some similarity to alternative splicing known from eukaryotes which further increases the variability in protein encoding. Thus, the algorithms are modified by employing bi-directional reading procedures. The other main focus is on the comprehensive description of DNA as a dual coding device carrying two (digital and analog) types of information and on the biological meaning of this capacity. In particular, the interdependence of digital and analog coding properties of the DNA is studied with regard to regulation of genetic function. To this end, the role of the spatial order of genes and the genomic gradients of DNA thermodynamic stability and superhelical density in the bacterial chromosome is investigated. The analysis is performed with regard to alterations of spatiotemporal gene expression patterns and entropy (Shannon and Gibbs) profiles. Furthermore, the role of the DNA configuration and the organization of transient chromosomal structural-functional domains (TSFDs) in coordinating genomic expression with environmental changes is explored in wild type E. coli cells and in mutants lacking the chromosome-shaping factors, as well as in the plant pathogenic bacterium D. dadantii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Publications within the Project

  • Jiang X et al (2015) Chromosomal “Stress-Response” domains govern the spatiotemporal expression of the bacterial virulence program. In: mBio 6.3, e00353–15

    Google Scholar 

  • Mahmood A, Henkel W (2013a) Codon-based distance matrix using modified empirical codon mutation matrix. In: ITG-Fachgruppe Bio-Informationstheorie, April 2013

    Google Scholar 

  • Mahmood A, Henkel W (2013b) Einrichtung und Verfahren zur Kompression von Quellendaten unter Nutzung von Symmetrie. German. Gebrauchsmusteranmeldung H03M 7/40 - 01 January 2013

    Google Scholar 

  • Mahmood A, Islam N, Nigatu D, Henkel W (2014) DNA inspired bidirectional Lempel-Ziv-like compression algorithms. In: 2014 8th international symposium on turbo codes and iterative information processing (ISTC), August 2014, pp 162–166

    Google Scholar 

  • Muskhelishvili G, Travers A (2013) Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information. English. In: Cellular and molecular life sciences, pp 1–13. doi:10.1007/s00018-013-1394-1

  • Muskhelishvili G, Travers A (2014) Order from the order: how a spatiotemporal genetic program is encoded in a 2-D genetic map of the bacterial chromosome. J Mol Microbiol Biotechnol 24(5–6):332–343

    Article  Google Scholar 

  • Nigatu D, Mahmood A, Henkel W (2014a) The empirical codon mutation matrix as a communication channel. BMC Bioinform 15(80) (22 March 2014)

    Google Scholar 

  • Nigatu D et al (2014b) Relating digital information, thermodynamic stability, and classes of functional genes in E. coli. In: 2014 IEEE global conference on signal and information processing (GlobalSIP), December 2014, pp 1338–1341

    Google Scholar 

  • Nigatu D et al (2016) Relationship between digital information and thermodynamic stability in bacterial genomes. In: EURASIP journal on bioinformatics and systems biology, p 4 (1 February 2016). http://bsb.eurasipjournals.com/content/2016/1/4

  • Sobetzko P et al (2013) DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. Mol Biosyst 9(7):1643–1651

    Article  Google Scholar 

  • Travers A, Muskhelishvili G, Thompson JMT (2012) DNA information: from digital code to analogue structure. Philos Trans A Math Phys Eng Sci 370(1969):2960–2986

    Google Scholar 

Other Publications

  • Babu MM (2008) Computational approaches to study transcriptional regulation. Biochem Soc Trans 36(4):758–765

    Article  Google Scholar 

  • Berger M et al (2010) Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU. EMBO Rep 11(1):59–64

    Article  Google Scholar 

  • Borg I, Groenen P (2003) Modern multidimensional scaling: theory and applications. J Educ Meas 40(3):277–280

    Article  MATH  Google Scholar 

  • Geertz M et al (2011) Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit? MBio 2(4):e00034–11

    Article  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4154):862–864

    Article  Google Scholar 

  • King JL, Jukes TH (1969) Non-darwinian evolution. Science, New York, NY 164(3881):788

    Article  Google Scholar 

  • Kumar S et al (2015) Analysis of the hierarchical structure of the B. subtilis transcriptional regulatory network. Mol BioSyst 11(3):930–941

    Article  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci 84(20):7024–7027

    Article  Google Scholar 

  • Lesne A (2013) Multiscale analysis of biological systems. Acta Biotheor 61(1):3–19

    Article  Google Scholar 

  • Mathelier A, Carbone A (2010) Chromosomal periodicity and positional networks of genes in Escherichia coli. Molecular Syst Biol 6(1):366

    Google Scholar 

  • Marr C et al (2008) Dissecting the logical types of network control in gene expression profiles. BMC Syst Biol 2(1):18

    Article  Google Scholar 

  • Michel CJ (2007) An analytical model of gene evolution with 9 mutation parameters: an application to the amino acids coded by the common circular code. Bull Math Biol 69(2):677–698

    Article  MATH  Google Scholar 

  • Muskhelishvili G (2015) DNA information: laws of perception. Springer, Heidelberg

    Google Scholar 

  • Pemberton IK et al (2002) FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. J Mol Biol 318(3):651–663

    Article  Google Scholar 

  • SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci 95(4):1460–1465

    Article  Google Scholar 

  • Schneider A, Cannarozzi G, Gonnet G (2005) Empirical codon substitution matrix. BMC Bioinform

    Google Scholar 

  • Sonnenschein N et al (2011) Analog regulation of metabolic demand. BMC Syst Biol 5(1):40

    Article  Google Scholar 

  • Sobetzko P, Travers A, Muskhelishvili G (2012) Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci 109(2):E42–E50

    Article  Google Scholar 

  • Travers A, Muskhelishvili G (2013) DNA thermodynamics shape chromosome organisation and topology. Biochem Soc Trans 41:548–553

    Article  Google Scholar 

  • Valens M et al (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23(21):4330–4341

    Article  Google Scholar 

  • Wang X, Llopis PM, Rudner DZ (2013) Organization and segregation of bacterial chromosomes. Nat Rev Genet 14(3):191–203

    Article  Google Scholar 

  • Welch TA (1984) A technique for high-performance data compression. Computer 17(6):8–19

    Article  Google Scholar 

  • Ziv J, Lempel A (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23(3):337–343

    Article  MathSciNet  MATH  Google Scholar 

  • Ziv J, Lempel A (1978) Compression of individual sequences via variablerate coding. IEEE Trans Inf Theory 24(5):530–536

    Article  MATH  Google Scholar 

  • The Brothers Grimm. Grimms’ Fairy Tales, April 2001. http://www.gutenberg.org/cache/epub/2591/pg2591.txt

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Henkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Henkel, W., Muskhelishvili, G., Nigatu, D., Sobetzko, P. (2018). The DNA from a Coding Perspective. In: Bossert, M. (eds) Information- and Communication Theory in Molecular Biology. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-54729-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54729-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54728-2

  • Online ISBN: 978-3-319-54729-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics