Built-In Self-Test

  • Ran WangEmail author
  • Krishnendu Chakrabarty


It is well-known that BIST offers several advantages over an ATE [1].


Test Pattern Test Response Test Cost Fault Coverage Area Overhead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Bushnell, V.D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, vol. 17 (Springer, 2000)Google Scholar
  2. 2.
    A.S. Hassan, V.K. Agarwal, B. Nadeau-Dostie, J. Rajski, BIST of PCB interconnects using boundary-scan architecture. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11, 1278–1288 (1992)CrossRefGoogle Scholar
  3. 3.
    C.-H. Chiang, S.K. Gupta, BIST TPGs for faults in board level interconnect via boundary scan, in IEEE VLSI Test Symposium, 1997, pp. 376–382Google Scholar
  4. 4.
    S. Wang, Generation of low power dissipation and high fault coverage patterns for scan-based BIST, in ITC, 2002, pp. 834–843Google Scholar
  5. 5.
    P. Dorsey, Xilinx stacked silicon interconnect technology delivers breakthrough FPGA capacity, bandwidth, and power efficiency, in Xilinx White Paper: Virtex-7 FPGAs, 2010, pp. 1–10Google Scholar
  6. 6.
    E. Marinissen, Challenges and emerging solutions in testing TSV-based 2.5D- and 3D-stacked ICs, in Proceedings of the Design, Automation Test in Europe Conference, 2012, pp. 1277–1282Google Scholar
  7. 7.
    P.T. Wagner, Interconnect Testing with Boundary Scan, in IEEE International Test Conference, 1987, pp. 52–57Google Scholar
  8. 8.
    A. Kapoor, N. Jayakumar, S.P. Khatri, A novel clock distribution and dynamic de-skewing methodology, in IEEE/ACM International Conference on Computer Aided Design, 2004, pp. 626–631Google Scholar
  9. 9.
    S. Sunter, M. Tilmann, BIST of I/O circuit parameters via standard boundary scan, in IEEE International Test Conference (ITC), 2010, pp. 1–10Google Scholar
  10. 10.
    M. Sunohara, T. Tokunaga, T. Kurihara, M. Higashi, Silicon interposer with TSVs (Through Silicon Vias) and fine multilayer wiring, in IEEE Electronic Components and Technology Conference, 2008, pp. 847–852Google Scholar
  11. 11.
    B. Banijamali, S. Ramalingam, K. Nagarajan, R. Chaware, Advanced reliability study of TSV interposers and interconnects for the 28 nm technology FPGA, in IEEE Electronic Components and Technology Conference, pp. 285–290, 2011Google Scholar
  12. 12.
    H.H. Jones, Technical viability of stacked silicon interconnect technology. Xilinx. White Paper,, 2010
  13. 13.
    P. Dorsey, Xilinx stacked silicon interconnect technology delivers breakthrough FPGA capacity, bandwidth, and power efficiency. White Paper, papers/wp380 Stacked Silicon Interconnect Technology.pdf, 2010
  14. 14.
    X. Wen, VLSI testing and test power, in IEEE International Green Computing Conference and Workshops, 2011, pp. 1–6Google Scholar
  15. 15.
    C.-C. Chi, E.J. Marinissen, S.K. Goel, C.-W. Wu, Post-bond Testing of 2.5D-SICs and 3D-SICs containing a passive silicon interposer base, in IEEE International Test Conference, 2011Google Scholar
  16. 16.
  17. 17.
  18. 18.
    C. Albrecht, IWLS 2005 benchmarks, in International Workshop for Logic Synthesis (IWLS),, 2005
  19. 19.
    Opencores benchmark,
  20. 20.
    C.-C. Chi, C.-W. Wu, M.-J. Wang, H.-C. Lin, 3D-IC Interconnect Test, Diagnosis, and Repair, in VLSI Test Symposium, 2013, pp. 118–123Google Scholar
  21. 21.
    L. Cadix, Lifting the veil on silicon interposer pricing,, 2012
  22. 22.
    R. Wang, K. Chakrabarty, S. Bhawmik, At-speed interconnect testing and test-path optimization for 2.5D ICs, in IEEE VLSI Test Symposium, 2014, pp. 1–6Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Nvidia (United States)SunnyvaleUSA
  2. 2.Department of ECEDuke UniversityDurhamUSA

Personalised recommendations