Skip to main content

Approaches for Characterizing Nonlinear Mixtures in Hyperspectral Imagery

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 5

Abstract

This study considers a physics-based and a kernel-based approach for characterizing pixels in a scene that may be linear (areal mixed) or nonlinear (intimately mixed). The physics-based method is based on earlier studies that indicate nonlinear mixtures in reflectance space are approximately linear in albedo space. The approach converts reflectance to single scattering albedo (SSA) according to Hapke theory assuming bidirectional scattering at nadir look angles and uses a constrained linear model on the computed albedo values. The kernel-based method is motivated by the same idea, but uses a kernel that seeks to capture the linear behavior of albedo in nonlinear mixtures of materials. The behavior of the kernel method is dependent on the value of a parameter, gamma. Validation of the two approaches is performed using laboratory data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Adams, M. Smith, P. Johnson, Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 Site. J. Geophys. Res. 91(B8), 8098–8112 (1986)

    Article  Google Scholar 

  2. J. Boardman, in Automating linear mixture analysis of imaging spectrometry data. Proceedings of the International Symposium on Spectral Sensing Research (ISSSR), San Diego, CA (1994)

    Google Scholar 

  3. R.S. Rand, in A physically-constrained localized linear mixing model for TERCAT applications. Proceedings of the SPIE Aerosense, Orlando, FL (2003)

    Google Scholar 

  4. R.S. Rand, in Automated classification of built-up areas using neural networks and subpixel demixing methods on multispectral/hyperspectral data. Proceedings of the 23rd Annual Conference of the Remote Sensing Society (RSS97), Reading, United Kingdom (1997)

    Google Scholar 

  5. R.S. Rand, in Exploitation of hyperspectral data using discriminants and constrained linear subpixel demixing to perform automated material identification. Proceedings of the International Symposium on Spectral Sensing Research (ISSSR), Melbourne, Australia (1995)

    Google Scholar 

  6. R.S. Rand, D.M. Keenan, A spectral mixture process conditioned by Gibbs-based partitioning. IEEE Trans. Geosci. Remote Sens. 39(7), 1421–1434 (2001)

    Article  Google Scholar 

  7. D.C. Heinz, C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)

    Article  Google Scholar 

  8. D. Montgomery, E. Peck, Introduction to Linear Regression Analysis, Wiley Series in Probability and Mathematical Statistics, 2nd edn. (Wiley, New York, NY, 1992)

    MATH  Google Scholar 

  9. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, Cambridge, 1993.) 455 p.

    Book  Google Scholar 

  10. J.F. Mustard, C.M. Pieters, Photometric phase functions of common geologic minerals and application to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. 94, 13619–13634 (1989)

    Article  Google Scholar 

  11. S.G. Herzog, J.F. Mustard, Reflectance spectra of five component mineral mixtures: implications for mixture modeling. Lunar Planet. Sci. XXVII 27, 535–536 (1996)

    Google Scholar 

  12. R.G. Resmini, W.R. Graver, M.E. Kappus, M.E. Anderson, in Constrained energy minimization applied to apparent reflectance and single-scattering albedo spectra: a comparison, ed. By S. Shen Sylvia. Proceedings of the SPIE: Hyperspectral Remote Sensing and Applications, vol. 2821 (1996), pp. 3–13, Denver, Colo., August 5–6, doi: 10.1117/12.257168

  13. R.G. Resmini, in Enhanced detection of objects in shade using a single-scattering albedo transformation applied to airborne imaging spectrometer data. The International Symposium on Spectral Sensing Research, San Diego, California, CD-ROM (1997), 7 p.

    Google Scholar 

  14. J.M.P. Nascimento, J.M. Bioucas-Dias. Unmixing hyperspectral intimate mixtures. Proc. SPIE. 7830, 8 (2010). doi: 10.1117/12.8651188

  15. H. Kwon, N.M. Nasrabadi, Kernel matched subspace detectors for hyperspectral target detection. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 178–194 (2006)

    Article  Google Scholar 

  16. G. Camps-Valls, L. Bruzzone, Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  17. B. Scholkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (The MIT Press, Cambridge, MA, 2002)

    Google Scholar 

  18. J.B. Broadwater, R. Chellappa, A. Banerjee, P. Burlina, in Kernel fully constrained least squares abundance estimates. Proceedings of the IEEE International Geoscience and Remote Symposium (IGARSS 2007), Barcelona, Spain (2007), pp. 4091–4044

    Google Scholar 

  19. J.B. Broadwater, A. Banerjee, in A generalized kernel for areal and intimate mixtures. Proceedings of the IEEE WHISPERS ‘10, Reykjavik, Iceland (2010)

    Google Scholar 

  20. J.B. Broadwater, A. Banerjee, in Mapping intimate mixtures using an adaptive kernel-based technique. Proceedings of the IEEE WHISPERS ‘11, Lisbon, Portugal (2011)

    Google Scholar 

  21. J.B. Broadwater, A. Banerjee, in A comparison of kernel functions for intimate mixture models. Proceedings of the IEEE WHISPERS ‘09, Grenoble, France (2009)

    Google Scholar 

  22. R.S. Rand, A. Banerjee, J. Broadwater, in Automated endmember determination and adaptive spectral mixture analysis using kernel methods. Proceedings of SPIE, Optics and Photonics, San Diego, CA, August (2013)

    Google Scholar 

  23. R.G. Resmini, R.S. Rand, D.W. Allen, C.J. Deloy, in An analysis of the nonlinear spectral mixing of didymium and soda lime glass beads using hyperspectral imagery (HSI) microscopy. Proceedings of SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 9088OZ (2014), 15p. doi: 10.1117/12.2051434

  24. R.P. Brent, Algorithms for Minimization Without Derivatives (Prentice-Hall, Englewood Cliffs, 1973)

    MATH  Google Scholar 

  25. Photographs in Figures 1 and 2 taken by the co-author Dr. David W. Allen of NIST and owned by the U.S. Government.

    Google Scholar 

  26. http://www.resonon.com/imagers_pika_iii.html (last Accessed on 3 Dec 2013)

  27. We have also used an Edmund Optics Gold Series 1.0X telecentric lens that gives ~8 μm/pixel. However, data at such a high spatial resolution were not required for the analyses reported upon here

    Google Scholar 

  28. Note: References are made to certain commercially available products in this paper to adequately specify the experimental procedures involved. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that these products are the best for the purpose specified

    Google Scholar 

  29. J.R. Schott, Remote Sensing: The Image Chain Approach, 2nd edn. (Oxford University Press, New York, NY, 2007.) 688 p.

    Google Scholar 

  30. R.S. Rand, R.G. Resmini, D.W. Allen, Modeling linear and intimate mixtures of materials in hyperspectral imagery with single—scattering Albedo and Kernel approaches. J. Appl. Remote Sens. 11(1), 016005 (2017). doi:10.1117/1.JRS.11.016005

    Google Scholar 

Download references

Acknowledgements

The MITRE Innovation Program (MIP) is gratefully acknowledged for funding the HSI Microscopy aspect of the project in which the study presented here was conducted.

This book chapter has been approved for public release by NGA (Case Number 16-216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Rand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rand, R.S., Resmini, R.G., Allen, D.W. (2017). Approaches for Characterizing Nonlinear Mixtures in Hyperspectral Imagery. In: Balan, R., Benedetto, J., Czaja, W., Dellatorre, M., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 5. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-54711-4_5

Download citation

Publish with us

Policies and ethics