Skip to main content

Fractional Differentiation: Leibniz Meets Hölder

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 5

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We discuss how to estimate the fractional derivative of the product of two functions, not in the pointwise sense, but on Lebesgue spaces whose indices satisfy Hölder’s inequality

Grafakos acknowledges the support of the Simons Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Bernicot, D. Maldonado, K. Moen, V. Naibo, Bilinear Sobolev-Poincaré inequalities and Leibniz-type rules. J. Geom. Anal. 24, 1144–1180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Bourgain, D. Li, On an endpoint Kato-Ponce inequality. Differ. Integr. Equ. 27(11/12), 1037–1072 (2014)

    MathSciNet  MATH  Google Scholar 

  3. F. Christ, M. Weinstein, Dispersion of small-amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.R. Coifman, Y. Meyer, Commutateurs d’ intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28, 177–202 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. R.R. Coifman, Y. Meyer, Au délà des opérateurs pseudo-différentiels. Astérisque No. 57 (Societé Mathematique de France, Paris, 1979)

    Google Scholar 

  6. E. Cordero, D. Zucco, Strichartz estimates for the vibrating plate equation. J. Evol. Equ. 11(4), 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Grafakos, Classical Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, no 249 (Springer, New York, 2008)

    Google Scholar 

  8. L. Grafakos, Multilinear operators in harmonic analysis and partial differential equations. Harmonic analysis and nonlinear partial differential equations, Research Institute of Mathematical Sciences (Kyoto), 2012

    MATH  Google Scholar 

  9. L. Grafakos, S. Oh, The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Grafakos, R.H. Torres, Multilinear Calderón-Zygmund theory. Adv. Math. 165, 124–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Grafakos, D. Maldonado, V. Naibo, A remark on an endpoint Kato-Ponce inequality. Differ. Integr. Equ. 27, 415–424 (2014)

    MathSciNet  MATH  Google Scholar 

  12. A. Gulisashvili, M. Kon, Exact smoothing properties of Schröndinger semigroups. Am. J. Math. 118, 1215–1248 (1996)

    Article  MATH  Google Scholar 

  13. T. Kato, Remarks on the Euler and Navier-Stokes equations in R 2, in Nonlinear Functional Analysis and Its Applications, Part 2 (Berkeley, California, 1983). Proceedings of Symposia in Pure Mathematics, vol. 45, Part 2 (American Mathematical Society, Providence, RI, 1986), pp. 1–7

    Google Scholar 

  14. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. C.E. Kenig, E.M. Stein, Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. C.E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de-Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Muscalu, W. Schlag, Classical and Multilinear Harmonic Analysis, Volume 2. Cambridge Studies in Advanced Mathematics, 138 (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  18. C. Muscalu, J. Pipher, T. Tao, C. Thiele, Bi-parameter paraproducts. Acta Math. 193, 269–296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loukas Grafakos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grafakos, L. (2017). Fractional Differentiation: Leibniz Meets Hölder. In: Balan, R., Benedetto, J., Czaja, W., Dellatorre, M., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 5. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-54711-4_2

Download citation

Publish with us

Policies and ethics