Skip to main content

A Fast Fourier Transform for Fractal Approximations

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 5

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We consider finite approximations of a fractal generated by an iterated function system of affine transformations on \(\mathbb{R}^{d}\) as a discrete set of data points. Considering a signal supported on this finite approximation, we propose a Fast (Fractal) Fourier Transform by choosing appropriately a second iterated function system to generate a set of frequencies for a collection of exponential functions supported on this finite approximation. Since both the data points of the fractal approximation and the frequencies of the exponential functions are generated by iterated function systems, the matrix representing the Discrete Fourier Transform (DFT) satisfies certain recursion relations, which we describe in terms of Diţǎ’s construction for large Hadamard matrices. These recursion relations allow for the DFT matrix calculation to be reduced in complexity to O(NlogN), as in the case of the classical FFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Auslander, R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics? Bull. Am. Math. Soc. (N.S.) 1(6), 847–897 (1979). MR 546312 (81e:42020)

    Google Scholar 

  2. T. Banica, Quantum permutations, Hadamard matrices, and the search for matrix models. Banach Cent. Publ. 98, 11–42 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965). MR 0178586 (31 #2843)

    Google Scholar 

  4. P. Diţă, Some results on the parametrization of complex Hadamard matrices. J. Phys. A 37(20), 5355–5374 (2004). MR 2065675 (2005b:15045)

    Google Scholar 

  5. D.E. Dutkay, P.E.T. Jorgensen, Fourier frequencies in affine iterated function systems. J. Funct. Anal. 247(1), 110–137 (2007). MR MR2319756 (2008f:42007)

    Google Scholar 

  6. D.E. Dutkay, D. Han, Q. Sun, On the spectra of a Cantor measure. Adv. Math. 221(1), 251–276 (2009). MR MR2509326

    Google Scholar 

  7. D.E. Dutkay, J. Haussermann, E. Weber, Spectral properties of small Hadamard matrices. Linear Algebra Appl. 506, 363–381 (2016). ISSN:0024-3795, doi:10.1016/j.laa.2016.06.006, http://dx.doi.org/10.1016/j.laa.2016.06.006. MR CLASS 15B34 (05B20 11L05 65T50), MR NUMBER 3530685

  8. A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14(6), 1368–1393 (1993). MR 1241591 (95d:65114)

    Google Scholar 

  9. A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data. II. Appl. Comput. Harmon. Anal. 2(1), 85–100 (1995). MR 1313101 (95m:65222)

    Google Scholar 

  10. K. Falconer, Fractal Geometry. Mathematical Foundations and Applications (Wiley, Chichester, 1990). MR MR1102677 (92j:28008)

    Google Scholar 

  11. L. Greengard, J.-Y. Lee, Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46(3), 443–454 (2004). MR 2115056 (2006g:65222)

    Google Scholar 

  12. J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981). MR MR625600 (82h:49026)

    Google Scholar 

  13. P.E.T. Jorgensen, S. Pedersen, Dense analytic subspaces in fractal L 2-spaces. J. Anal. Math. 75, 185–228 (1998). MR MR1655831 (2000a:46045)

    Google Scholar 

  14. J.H. McClellan, T.W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. AU-20(1), 66–74 (1972). MR 0399751 (53 #3593)

    Google Scholar 

  15. W. Tadej, K. Życzkowski, A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13(2), 133–177 (2006). MR 2244963 (2007f:15020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calvin Hotchkiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hotchkiss, C., Weber, E.S. (2017). A Fast Fourier Transform for Fractal Approximations. In: Balan, R., Benedetto, J., Czaja, W., Dellatorre, M., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 5. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-54711-4_13

Download citation

Publish with us

Policies and ethics