Skip to main content

Use of Quillen-Suslin Theorem for Laurent Polynomials in Wavelet Filter Bank Design

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 5

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 815 Accesses

Abstract

In this chapter we give an overview of a method recently developed for designing wavelet filter banks via the Quillen-Suslin Theorem for Laurent polynomials. In this method, the Quillen-Suslin Theorem is used to transform vectors with Laurent polynomial entries to other vectors with Laurent polynomial entries so that the matrix analysis tools that were not readily available for the vectors before the transformation can now be employed. As a result, a powerful and general method for designing non-redundant wavelet filter banks is obtained. In particular, the vanishing moments of the resulting wavelet filter banks can be controlled in a very simple way, which is especially advantageous compared to other existing methods for the multi-dimensional cases.

This chapter is mainly based on the work with Hyungju Park and Fang Zheng presented in [15]. This research was partially supported by National Research Foundation of Korea (NRF) Grants 20151003262 and 20151009350.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    [

References

  1. M. Amidou, I. Yengui, An algorithm for unimodular completion over Laurent polynomial rings. Linear Algebra Appl. 429(7), 1687–1698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Bölcskei, F. Hlawatsch, H.G. Feichtinger, Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46(12), 3256–3268 (1998)

    Article  Google Scholar 

  3. B. Buchberger, Gröbner bases and systems theory. Multidim. Syst. Signal Process. 12, 223–251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. P.J. Burt, E.H. Adelson, The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  5. D.-R. Chen, B. Han, S.D. Riemenschneider, Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Adv. Comput. Math. 13(2), 131–165 (2000)

    Google Scholar 

  6. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra (Springer, New York, 2006)

    MATH  Google Scholar 

  7. M.N. Do, M. Vetterli, Framing pyramids. IEEE Trans. Signal Process. 51(9), 2329–2342 (2003)

    Article  MathSciNet  Google Scholar 

  8. B. Han, R.-Q. Jia, Optimal interpolatory subdivision schemes in multidimensional spaces. SIAM J. Numer. Anal. 36, 105–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. D.J. Heeger, J.R. Bergen, Pyramid-based texture analysis/synthesis, in Proceedings of ACM SIGGRAPH (1995), pp. 229–238

    Google Scholar 

  10. Y. Hur, Effortless critical representation of Laplacian pyramid. IEEE Trans. Signal Process. 58, 5584–5596 (2010)

    Article  MathSciNet  Google Scholar 

  11. Y. Hur, A. Ron, CAPlets: wavelet representations without wavelets, preprint (2005). Available online: ftp://ftp.cs.wisc.edu/Approx/huron.ps

  12. Y. Hur, A. Ron, L-CAMP: extremely local high-performance wavelet representations in high spatial dimension. IEEE Trans. Inf. Theory 54, 2196–2209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Hur, A. Ron, High-performance very local Riesz wavelet bases of L 2(R n). SIAM J. Math. Anal. 44, 2237–2265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Hur, F. Zheng, Coset Sum: an alternative to the tensor product in wavelet construction. IEEE Trans. Inf. Theory 59, 3554–3571 (2013)

    Article  Google Scholar 

  15. Y. Hur, H. Park, F. Zheng, Multi-D wavelet filter bank design using Quillen-Suslin theorem for Laurent polynomials. IEEE Trans. Signal Process. 62, 5348–5358 (2014)

    Article  MathSciNet  Google Scholar 

  16. Z. Lin, L. Xu, Q. Wu, Applications of Gröbner bases to signal and image processing: a survey. Linear Algebra Appl. 391, 169–202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Logar, B. Sturmfels, Algorithms for the Quillen-Suslin theorem. J. Algebra 145, 231–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  19. Y. Meyer, Wavelets and Operators (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  20. H. Park, A computational theory of Laurent polynomial rings and multidimensional FIR systems. Ph.D. dissertation, University of California, Berkeley (1995)

    Google Scholar 

  21. H. Park, Optimal design of synthesis filters in multidimensional perfect reconstruction FIR filter banks using Gröbner bases. IEEE Trans. Circuits Syst. 49, 843–851 (2002)

    Article  Google Scholar 

  22. H. Park, Symbolic computation and signal processing. J. Symb. Comput. 37(2), 209–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Park, C. Woodburn, An algorithmic proof of Suslin’s stability theorem for polynomial rings. J. Algebra 178(1), 277–298 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Quillen, Projective modules over polynomial rings. Invent. Math. 36(1), 167–171 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. S.D. Riemenschneider, Z. Shen, Multidimensional interpolatory subdivision schemes. SIAM J. Numer. Anal. 34, 2357–2381 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.-P. Serre, Faisceaux algébriques cohérents. Ann. Math. 61, 191–274 (1955)

    Article  MATH  Google Scholar 

  27. A.K. Soman, P.P. Vaidyanathan, Generalized polyphase representation and application to coding gain enhancement. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 41(9), 627–630 (1994)

    Article  MATH  Google Scholar 

  28. G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge Press, Wellesley, 1997)

    MATH  Google Scholar 

  29. A.A. Suslin, Projective modules over a polynomial ring are free. Sov. Math. Dokl. 17(4), 1160–1164 (1976)

    MATH  Google Scholar 

  30. R.G. Swan, Projective modules over Laurent polynomial rings. Trans. Am. Math. Soc 237, 111–120 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Toelg, T. Poggio, Towards an example-based image compression architecture for video-conferencing, A.I. Memo No. 1494, MIT (1994)

    Google Scholar 

  32. M. Unser, An improved least squares Laplacian pyramid for image compression. Signal Process. 27, 187–203 (1992)

    Article  Google Scholar 

  33. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, Englewood Cliffs, NJ, 1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmi Hur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hur, Y. (2017). Use of Quillen-Suslin Theorem for Laurent Polynomials in Wavelet Filter Bank Design. In: Balan, R., Benedetto, J., Czaja, W., Dellatorre, M., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 5. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-54711-4_12

Download citation

Publish with us

Policies and ethics