The Renaissance of General Relativity: A New Perspective

  • Roberto LalliEmail author
Part of the SpringerBriefs in History of Science and Technology book series (BRIEFSHIST)


This chapter presents a general historiographical framework for interpreting the renaissance of general relativity as a consequence of the interplay between internal and environmental factors. The internal factors refer to the resilient theoretical framework provided by general relativity to physicists working in diverse and dispersed fields. The external factors relate to the changing working conditions of physicists in the post-World War II period, with the newly created conditions for the mobility of young researchers, for the transfer of knowledge in a growing international community, and for the self-organization of an identifiable community. These external factors created a favorable environment for integrating the dispersed research endeavors under the new heading of “General Relativity and Gravitation” research. This, in turn, provided the conditions for the emergence of a coherent investigation of the theoretical core of general relativity for its own sake and for the creation of a community specifically dedicated to this goal.


Albert Einstein Epistemic dispersion General relativity Low-water mark of general relativity Quantization of gravity Relativistic cosmology Renaissance of general relativity Unified field theory Untapped potential of general relativity 


  1. Bettencourt, Luís M.A., David I. Kaiser, Jasleen Kaur, Carlos Castillo-Chávez, and David E. Wojick. 2008. Population modeling of the emergence and development of scientific fields. Scientometrics 75: 495–518. doi: 10.1007/s11192-007-1888-4.CrossRefGoogle Scholar
  2. Blum, Alexander, Roberto Lalli, and Jürgen Renn. 2015. The reinvention of general relativity: A historiographical framework for assessing one hundred years of curved space-time. Isis 106: 598–620.Google Scholar
  3. Blum, Alexander, Roberto Lalli, and Jürgen Renn. 2016. The renaissance of general relativity: How and why it happened. Annalen der Physik 528: 344–349. doi: 10.1002/andp.201600105.
  4. Blum, Alexander, Domenico Giulini, Roberto Lalli, and Jürgen Renn. 2017. Editorial introduction to the special issue “The Renaissance of Einstein’s Theory of Gravitation”. The European Physical Journal H 42: 95–105. doi: 10.1140/epjh/e2017-80023-3.
  5. Blum, Alexander, and Dean Rickles (eds.). 2017. Quantum gravity in the first half of the twentieth century: A sourcebook. Berlin: Edition Open Access.Google Scholar
  6. Bonolis, Luisa. 2017. Stellar structure and compact objects before 1940: Towards relativistic astrophysics. The European Physical Journal H 42: 311–393. doi: 10.1140/epjh/e2017-80014-4.CrossRefGoogle Scholar
  7. Cartan, Élie. 1922a. Sur les espaces généralisés et la théorie de la Relativité. Comptes Rendus 174: 734–737.Google Scholar
  8. Cartan, Élie. 1922b. Sur les espaces conformes généralisés et l’Univers optique. Comptes Rendus 174: 857–860.Google Scholar
  9. van Dongen, Jeroen. 2010. Einstein’s unification. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Eisenstaedt, Jean. 1986. La relativité générale à l’étiage: 1925–1955. Archive for History of Exact Sciences 35: 115–185.CrossRefGoogle Scholar
  11. Eisenstaedt, J. 1987. Trajectoires et impasses de la solution de Schwarzschild. Archive for History of Exact Sciences 37: 275–357.Google Scholar
  12. Eisenstaedt, Jean. 1989. The low water mark of general relativity, 1925–1955. In Einstein and the history of general relativity, ed. Don Howard and John Stachel, 277–292. Boston: Birkhäuser.Google Scholar
  13. Eisenstaedt, Jean. 2006. The curious history of relativity: How Einstein’s theory of gravity was lost and found again. Princeton: Princeton University Press.Google Scholar
  14. Ellis, George. 2012. Editorial note to: H. P. Robertson, Relativistic cosmology. General Relativity and Gravitation 44: 2099–2114. doi: 10.1007/s10714-012-1400-1.CrossRefGoogle Scholar
  15. Goenner, Hubert. 2004. On the history of unified field theories, Living Reviews in Relativity 7: 2. doi: 10.12942/lrr-2004-2.
  16. Goenner, Hubert. 2014. On the history of unified field theories, part II. (ca. 1930–ca. 1965). Living Reviews in Relativity 17: 5. doi: 10.12942/lrr-2014-5.CrossRefGoogle Scholar
  17. Goenner, Hubert. 2017. A golden age of general relativity? Some remarks on the history of general relativity. General Relativity and Gravitation 49: 42. doi: 10.1007/s10714-017-2203-1.CrossRefGoogle Scholar
  18. Goldstein, Catherine, and Jim Ritter. 2003. The varieties of unities: Sounding unified theories 1920–1930. In Revisiting the foundations of relativistic physics: Festschrift in honor of John Stachel, ed. Abhay Ashtekar, Robert S. Cohen, Don Howard, Jürgen Renn, Sahotra Sarkar, and Abner Shimony, 93–149. Dordrecht: Kluwer.Google Scholar
  19. Gutfreund, Hanoch, and Jürgen Renn. 2017. The formative years of relativity: The history and meaning of Einstein’s Princeton lectures. Princeton: Princeton University Press.Google Scholar
  20. Jordan, Pascual. 1955. Schwerkraft und Weltall: Grundlagen der theoretischen Kosmologie. Wissenschaft, Bd. 107. Braunschweig: F. Vieweg.Google Scholar
  21. Kaiser, David. 2000. Roger Babson and the rediscovery of general relativity. In Making theory: Producing theory and theorists in postwar America, 567–595. Ph.D. dissertation, Harvard University.Google Scholar
  22. Kaiser, David. 2005. Drawing theories apart: The dispersion of Feynman diagrams in postwar physics. Chicago: University of Chicago Press.Google Scholar
  23. Kaiser, David. 2012. Booms, busts, and the world of ideas: Enrollment pressures and the challenge of specialization. Osiris 27: 276–302. doi: 10.1086/667831.CrossRefGoogle Scholar
  24. Kennefick, Daniel. 2007. Traveling at the speed of thought: Einstein and the quest for gravitational waves. Princeton: Princeton University Press.CrossRefGoogle Scholar
  25. Kragh, Helge. 1999. Quantum generations: A history of physics in the twentieth century. Princeton: Princeton University Press.Google Scholar
  26. Kragh, Helge, and Dominique Lambert. 2007. The Context of discovery: Lemaître and the origin of the primeval-atom universe. Annals of Science 64: 445–470. doi: 10.1080/00033790701317692.
  27. Kruskal, Martin D. 1960. Maximal extension of Schwarzschild metric. Physical Review 119: 1743–1745. doi: 10.1103/PhysRev.119.1743.
  28. Kuhn, Thomas S. 1970. The structure of scientific revolutions, 2nd ed. Chicago: Chicago University Press.Google Scholar
  29. Longair, Malcolm S. 2006. The cosmic century: A history of astrophysics and cosmology. Cambridge, UK: Cambridge University Press.Google Scholar
  30. Newman, Ezra, and Roger Penrose. 1962. An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics 3: 566–578. doi: 10.1063/1.1724257.CrossRefGoogle Scholar
  31. Ortega-Rodríguez, M., H. Solís-Sánchez, E. Boza-Oviedo, K. Chaves-Cruz, M. Guevara-Bertsch, M. Quirós-Rojas, S. Vargas-Hernández, and A. Venegas-Li. 2017. The early scientific contributions of J. Robert Oppenheimer: Why did the scientific community miss the black hole opportunity? Physics in Perspective 19: 60–75. doi: 10.1007/s00016-017-0195-6.CrossRefGoogle Scholar
  32. Peebles, Phillip James Edwin. 2017. Robert Dicke and the naissance of experimental gravity physics, 1957–1967. The European Physical Journal H 42: 177–259. doi: 10.1140/epjh/e2016-70034-0.
  33. Penrose, Roger. 1960. A spinor approach to general relativity. Annals of Physics 10: 171–201. doi: 10.1016/0003-4916(60)90021-X.CrossRefGoogle Scholar
  34. Petrov, Alekei Z. 2000. The classification of spaces defining gravitational fields. General Relativity and Gravitation 32: 1665–1685. doi: 10.1023/A:1001910908054.
  35. Renn, Jürgen (ed.). 2007. The genesis of general relativity, 4 Vols. Dordrecht: Springer.Google Scholar
  36. Robinson, Ivor, Alfred Schild, and E. L. Schucking (eds.). 1965. Quasi-stellar sources and gravitational collapse, including the proceedings of the First Texas Symposium on relativistic astrophysics. Chicago: University of Chicago Press.Google Scholar
  37. Rickles, Dean. 2015. Institute of Field Physics, Inc: Private Patronage and The Renaissance of Gravitational Physics. Talk presented at the conference A Century of General Relativity, Berlin, 4 December 2015.Google Scholar
  38. Szekeres, George. 1960. On the singularities of a Riemannian manifold. Publicationes Mathematicae Debrecen 7: 285–301.Google Scholar
  39. Thorne, Kip S. 1994. Black holes and time warps: Einstein’s outrageous legacy. New York: WWNorton.Google Scholar
  40. Vizgin, V. P., and G. E. Gorelik. 1987. The reception of the theory of relativity in Russia and the USSR. In The comparative reception of relativity, ed. Thomas F. Glick, 354–363. Dordrecht: Reidel.Google Scholar
  41. Will, Clifford. 1986. Was Einstein right?: Putting general relativity to the test. New York: Basic Books.Google Scholar
  42. Will, Clifford. 1989. The renaissance of general relativity. In The new physics, ed. Paul Davies, 7–33. Cambridge: Cambridge University Press.Google Scholar
  43. Wright, Aaron Sidney. 2014. The advantages of bringing infinity to a finite place. Historical Studies in the Natural Sciences 44: 99–139. doi: 10.1525/hsns.2014.44.2.99.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations