Skip to main content

Neo-connectionism, Neurodynamics and Large-Scale Networks

  • Chapter
  • First Online:
The Broca-Wernicke Doctrine
  • 1412 Accesses

Abstract

After World War II, the centre of gravity in aphasiology research shifted from Europe to North America [1]. In this period, interest in the German and French localist theories waned to virtual non-existence in clinical practice. The localist view was replaced by ideas with a more holistic character. A factor that likely contributed to this transition was the many war casualties, whose complex disturbances and potential for recovery were not very well explained by the contemporary language theories. These observations triggered basic research on aphasia, as well as efforts to rehabilitate patients [2]. Somehow, then, interest renewed to a point where localism again became the dominant clinical view that it remains today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Foreword by Luria to The Man with a Shattered World [34]

  2. 2.

    See for a colourful example the Australian bowerbird, https://www.youtube.com/watch?v=GPbWJPsBPdA.

  3. 3.

    Quote taken from the website of the Society for Neuroscience, www.sfn.org

  4. 4.

    Quote from Greg Hickok, taken from www.talkingbrains.org , 25 May 2007

  5. 5.

    Remember that Luria defined functions more practically as a form of goal-directed behaviour. Such a definition emphasizes the fact that task performance underlies behaviour and functionality.

References

  1. Tesak J, Code C. Milestones in the history of aphasia: theories and protagonists. Hove: Psychology Press; 2008.

    Google Scholar 

  2. Wepman JM. Recovery from aphasia. New York: Ronald Press; 1951.

    Google Scholar 

  3. Geschwind N. Selected papers on language and the brain. Berlin: Springer; 1974.

    Book  Google Scholar 

  4. Myers RE, Sperry RW. Interocular transfer of a visual form discrimination habit in cats after section of the optic chiasm and corpus callosum. Anat Rec. 1953;115:351–2.

    Google Scholar 

  5. Geschwind N, Devinsky O, Schachter SC. Norman Geschwind: selected publications on language, epilepsy, and behavior. Boston: Butterworth-Heinemann; 1997.

    Google Scholar 

  6. Galaburda AM. Norman Geschwind 1926-1984. Neuropsychologia. 1985;23:297–304.

    Article  CAS  PubMed  Google Scholar 

  7. Geschwind N, Kaplan E. Random reports: human split-brain syndromes. N Engl J Med. 1962;266:1013.

    Google Scholar 

  8. Geschwind N, Kaplan E. A human cerebral deconnection syndrome. Neurology. 1962;12:675–85.

    Article  CAS  PubMed  Google Scholar 

  9. Geschwind N. Carl Wernicke, the Breslau school and the history of aphasia. In: Carterette EC, editor. Brain function, vol 3: speech, language, and communication. Berkely: University of California Press; 1963.

    Google Scholar 

  10. Lichtheim L. On aphasia. In: Grodzinsky Y, Amunts K, editors. Broca’s region. Oxford: Oxford University Press; 2006. p. 318–33.

    Chapter  Google Scholar 

  11. Freud S. On aphasia; a critical study. New York: International Universities Press; 1953.

    Google Scholar 

  12. Catani M, ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128:2224–39.

    Article  PubMed  Google Scholar 

  13. Geschwind N. Disconnexion syndromes in animals and man. Part I. Brain. 1965;88:237–94.

    Article  CAS  PubMed  Google Scholar 

  14. Geschwind N. Disconnexion syndromes in animals and man. Part II. Brain. 1965;88:585–644.

    Article  CAS  PubMed  Google Scholar 

  15. Flechsig P. Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet. 1901;2:1027–29.

    Google Scholar 

  16. Schmahmann JD, Pandya DN. Fiber pathways of the brain. New York: OUP; 2006.

    Book  Google Scholar 

  17. Finger S. Origins of neuroscience: a history of explorations into brain function. Oxford: Oxford University Press; 2001.

    Google Scholar 

  18. Anderson JM, Gilmore R, Roper S, et al. Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke-Geschwind model. Brain Lang. 1999;70:1–12.

    Article  CAS  PubMed  Google Scholar 

  19. Hagoort P. MUC (memory, unification, control) and beyond. Front Psychol. 2013;4:416.

    PubMed  PubMed Central  Google Scholar 

  20. Damasio AR, Geschwind N. Anatomical localization in clinical neuropsychology. In: Vinken PJ, Bruyn GW, Klawans HL, editors. Handbook of clinical neurology. Amsterdam: Elsevier; 1985. p. 7–22.

    Google Scholar 

  21. Goodglass H, Kaplan E. The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger; 1972.

    Google Scholar 

  22. Geschwind N. Review of traumatic aphasia by A.R. Luria. Language. 1972;48:755–63.

    Article  Google Scholar 

  23. Cole M, Cole S. The making of mind: a personal account of Soviet psychology. Cambridge: Harvard University Press; 1979.

    Google Scholar 

  24. Luria AR. Neuropsychology in the local diagnosis of brain damage. Cortex. 1964;1:3–18.

    Article  Google Scholar 

  25. Vocate DR. The theory of A.R. Luria: functions of spoken language in the development of higher mental processes. Hillsdale: Lawrence Erlbaum Associates; 1987.

    Google Scholar 

  26. Cole M, Levitin K, Luria AR. The autobiography of Alexander Luria. A dialogue with the making of mind. New York: Psychology Press; 2006.

    Google Scholar 

  27. Luria AR. Traumatic aphasia: its syndromes, psychopathology and treatment [in Russian]. Izd Akad Ped Nauk RSFSR. 1947.

    Google Scholar 

  28. Luria AR. Traumatic aphasia: its syndromes, psychology and treatment. The Hague: Walter De Gruyter; 1970.

    Book  Google Scholar 

  29. Luria AR. Neuropsychological studies in the USSR. A review (part I). Proc Natl Acad Sci U S A. 1973;70:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anokhin PR. Problems of the centrum and the periphery in the physiology of the nervous activity [in Russian]. State Publish House Gorkij. 1935.

    Google Scholar 

  31. Bernstein NA. Problems of interrelation of coordination and localization [in Russian]. Arch Biol Sci. 1935;38:1–43.

    Google Scholar 

  32. Luria AR. Higher cortical functions in man. 2nd ed. New York: Basic Books Inc.; 1980.

    Book  Google Scholar 

  33. Critchley M. In memoriam. A. R. Luria. Brain Lang. 1978;5:v–vi.

    Article  CAS  PubMed  Google Scholar 

  34. Luria AR. The man with a shattered world: the history of a brain wound. Cambridge: Harvard University Press; 1987.

    Google Scholar 

  35. Luria AR. Language and cognition. New York: Wiley; 1982.

    Google Scholar 

  36. Nissl V, Meyendorf E. Vom Lokalisations Problem der Artikulierten Sprache. Leipzig: Deutike; 1930.

    Google Scholar 

  37. Alajouanine T, Ombredane A, Durant M. Le syndrome desintegration phonetique. Paris: Masson; 1939.

    Google Scholar 

  38. Robinson G, Blair J, Cipolotti L. Dynamic aphasia: an inability to select between competing verbal responses? Brain. 1998;121:77–89.

    Article  PubMed  Google Scholar 

  39. Satoer D, Kloet A, Vincent A, et al. Dynamic aphasia following low-grade glioma surgery near the supplementary motor area: a selective spontaneous speech deficit. Neurocase. 2014;20(6):704–16.

    Article  PubMed  Google Scholar 

  40. Christensen A-L. Luria’s legacy in the 21st century. New York: Oxford University Press; 2009.

    Book  Google Scholar 

  41. Bailey CH, Giustetto M, Huang YY, et al. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nat Rev Neurosci. 2000;1:11–20.

    Article  CAS  PubMed  Google Scholar 

  42. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25:295–330.

    Article  CAS  PubMed  Google Scholar 

  43. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232:331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown RE, Milner PM. The legacy of Donald O. Hebb: more than the Hebb synapse. Nat Rev Neurosci. 2003;4:1013–9.

    Article  CAS  PubMed  Google Scholar 

  45. Rummelhart DE, McClelland JL. Parallel distributed processing. Cambridge: MIT Press; 1986.

    Google Scholar 

  46. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28:597–613.

    Article  CAS  PubMed  Google Scholar 

  47. McClelland JL, Rumelhart DE, Hinton GE. The appeal of parallel distributed processing. Cambridge: MIT Press; 1986.

    Google Scholar 

  48. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982;79:2554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Montgomery SH, Geisler JH, McGowen MR, et al. The evolutionary history of cetacean brain and body size. Evolution. 2013;67:3339–53.

    Article  PubMed  Google Scholar 

  50. Mesulam M. The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage. 2012;62:2182–9.

    Article  PubMed  Google Scholar 

  51. Darwin C. On the origins of species by means of natural selection. London: John Murray; 1859.

    Google Scholar 

  52. Lieberman P. Uniquely human: the evolution of speech, thought, and selfless behavior. Cambridge: Harvard University Press; 1993.

    Google Scholar 

  53. Falk D. The evolution of Broca’s area. IBRO History of Neuroscience; 2007.

    Google Scholar 

  54. Pollick AS, de Waal FB. Ape gestures and language evolution. Proc Natl Acad Sci U S A. 2007;104:8184–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Warden CJ, Warner LH. The sensory capacities and intelligence of dogs, with a report on the ability of the noted dog “fellow” to respond to verbal stimuli. Q Rev Biol. 1928;3:1–28.

    Article  Google Scholar 

  56. Chomsky N. Powers and prospects: reflections on human nature and the social order. Boston: South End Press; 1996.

    Google Scholar 

  57. Tecumseh Fitch W, de Boer B, Mathur N, Ghazanfar AA. Monkey vocal tracts are speech-ready. Sci Adv. 2016;2:e1600723.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Brodmann K. Vergleichende lokalisationslehre der Grosshirnrinde in ihren prinzipien dargestellt auf grund des Zellenbaues. Leipzig: J.A. Barth; 1909.

    Google Scholar 

  59. Falk D, Gibson KR. Evolutionary anatomy of the primate cerebral cortex. Cambridge: Cambridge University Press; 2008.

    Google Scholar 

  60. Preuss TM. What’s human about the human brain. New Cognit Neurosci. 2000;2:1219–34.

    Google Scholar 

  61. Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex. 1995;5:307–22.

    Article  CAS  PubMed  Google Scholar 

  62. Baleydier C, Achache P, Froment JC. Neurofilament architecture of superior and mesial premotor cortex in the human brain. Neuroreport. 1997;8:1691–6.

    Article  CAS  PubMed  Google Scholar 

  63. Zilles K, Schlaug G, Matelli M, et al. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat. 1995;187:515.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Walker AE. A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol. 1940;73:59–86.

    Article  Google Scholar 

  65. Von Bonin G. Architecture of the precentral motor cortex and some adjacent areas. In: Bucy PC, editor. The precentral motor cortex. Urbana: University of Illinois Press; 1949. p. 7–82.

    Google Scholar 

  66. Grodzinsky Y, Amunts K. Broca’s region. New York: Oxford University Press; 2006.

    Book  Google Scholar 

  67. Petrides M, Cadoret G, Mackey S. Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature. 2005;435:1235–8.

    Article  CAS  PubMed  Google Scholar 

  68. Petrides M, Pandya DN. Comparative cytoarchitectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J, editors. Handbook of neuropsychology. Amsterdam: Elsevier; 1994. p. 17–58.

    Google Scholar 

  69. Petrides M, Pandya DN. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci. 2002;16:291–310.

    Article  CAS  PubMed  Google Scholar 

  70. Eidelberg D, Galaburda AM. Inferior parietal lobule: divergent architectonic asymmetries in the human brain. Arch Neurol. 1984;41:843.

    Article  CAS  PubMed  Google Scholar 

  71. Galaburda AM, Pandya DN. Role of architectonics and connections in the study of primate brain evolution. In: Falk D, Armstrong E, editors. Primate brain evolution. Berlin: Springer; 1982. p. 203–16.

    Chapter  Google Scholar 

  72. Taglialatela JP, Savage-Rumbaugh S, Baker LA. Vocal production by a language-competent Pan paniscus. Int J Primatol. 2003;24:1–17.

    Article  Google Scholar 

  73. Hopkins WD, Taglialatela J, Leavens DA. Chimpanzees differentially produce novel vocalizations to capture the attention of a human. Anim Behav. 2007;73:281–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sutton D, Jurgens U. Neural control of vocalization. In: Steklis HD, Erwin J, editors. Comparative primate biology, neurosciences. New York: Alan R. Liss, Inc; 1988. p. 625–47.

    Google Scholar 

  75. Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD. Communicative signaling activates ‘Broca’s’ homolog in chimpanzees. Curr Biol. 2008;18:343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Caverzasi E, Papinutto N, Amirbekian B, et al. Q-ball of inferior fronto-occipital fasciculus and beyond. PLoS One. 2014;9:e100274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron. 1998;20:445–68.

    Article  CAS  PubMed  Google Scholar 

  78. Oleksiak A, Postma A, van der Ham IJ, et al. A review of lateralization of spatial functioning in nonhuman primates. Brain Res Rev. 2011;67:56–72.

    Article  PubMed  Google Scholar 

  79. Wurtz RH. Recounting the impact of Hubel and Wiesel. J Physiol. 2009;587:2817–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hackett TA, Stepniewska I, Kaas JH. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol. 1998;394:475–95.

    Article  CAS  PubMed  Google Scholar 

  81. Poeppel D, Overath T, Popper AN. The human auditory cortex. New York: Springer; 2012.

    Book  Google Scholar 

  82. Rauschecker JP. Ventral and dorsal streams in the evolution of speech and language. Front Evol Neurosci. 2012;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kaas JH, Hackett TA. ‘What’ and ‘where’ processing in auditory cortex. Nat Neurosci. 1999;2:1045–7.

    Article  CAS  PubMed  Google Scholar 

  84. Tian B, Reser D, Durham A, et al. Functional specialization in rhesus monkey auditory cortex. Science. 2001;292:290–3.

    Article  CAS  PubMed  Google Scholar 

  85. Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A. 2000;97:11800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.

    Article  CAS  PubMed  Google Scholar 

  87. Thiebaut de Schotten M, Dell’Acqua F, Valabregue R, Catani M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex. 2012;48:82–96.

    Google Scholar 

  88. Mesulam MM. Principles of behavioral and cognitive neurology. Oxford: Oxford University Press; 2000.

    Google Scholar 

  89. Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92:67–99.

    Article  PubMed  Google Scholar 

  90. Demonet JF, Chollet F, Ramsay S, et al. The anatomy of phonological and semantic processing in normal subjects. Brain. 1992;115:1753–68.

    Article  PubMed  Google Scholar 

  91. Petersen SE, Fox PT, Posner MI, et al. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.

    Article  CAS  PubMed  Google Scholar 

  92. Zatorre RJ, Evans AC, Meyer E. Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci. 1994;14:1908–19.

    CAS  PubMed  Google Scholar 

  93. Creutzfeldt O, Ojemann G, Lettich E. Neuronal activity in the human lateral temporal lobe. I Responses to speech. Exp Brain Res. 1989;77:451–75.

    Article  CAS  PubMed  Google Scholar 

  94. Mazzucchi A, Marchini C, Budai R, Parma M. A case of receptive amusia with prominent timbre perception defect. J Neurol Neurosurg Psychiatry. 1982;45:644–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Polster MR, Rose SB. Disorders of auditory processing: evidence for modularity in audition. Cortex. 1998;34:47–65.

    Article  CAS  PubMed  Google Scholar 

  96. Mesulam MM, Thompson CK, Weintraub S, Rogalski EJ. The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain. 2015;138:2423–37.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wise RJ, Scott SK, Blank SC, et al. Separate neural subsystems within ‘Wernicke’s area’. Brain. 2001;124:83–95.

    Article  CAS  PubMed  Google Scholar 

  98. Saur D, Kreher BW, Schnell S, et al. Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A. 2008;105:18035–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hickok G, Poeppel D. Towards a functional neuroanatomy of speech perception. Trends Cogn Sci. 2000;4:131–8.

    Article  CAS  PubMed  Google Scholar 

  100. Catani M, Thiebaut de Schotten M. Atlas of human brain connections. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  101. Bajada CJ, Lambon Ralph MA, Cloutman LL. Transport for language south of the Sylvian fissure: the routes and history of the main tracts and stations in the ventral language network. Cortex. 2015;69:141–51.

    Article  PubMed  Google Scholar 

  102. Papagno C, Casarotti A, Comi A, et al. Long-term proper name anomia after removal of the uncinate fasciculus. Brain Struct Funct. 2016;221(1):687–94.

    Article  PubMed  Google Scholar 

  103. Duffau H, Gatignol P, Mandonnet E, et al. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg. 2008;109:461–71.

    Article  PubMed  Google Scholar 

  104. Duffau H, Leroy M, Gatignol P. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers. Neuropsychologia. 2008;46:3197–209.

    Article  PubMed  Google Scholar 

  105. Hickok G, Buchsbaum B, Humphries C, Muftuler T. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci. 2003;15:673–82.

    Article  PubMed  Google Scholar 

  106. Cogan GB, Thesen T, Carlson C, et al. Sensory-motor transformations for speech occur bilaterally. Nature. 2014;507:94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57:8–16.

    Article  PubMed  Google Scholar 

  108. Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2005;15:854–69.

    Article  PubMed  Google Scholar 

  109. Aboitiz F, Aboitiz S, García RR. The phonological loop. Curr Anthropol. 2010;51:S55–65.

    Article  Google Scholar 

  110. Bernal B, Altman N. The connectivity of the superior longitudinal fasciculus: a tractography DTI study. Magn Reson Imaging. 2010;28:217–25.

    Article  PubMed  Google Scholar 

  111. Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014;131:1–10.

    Article  PubMed  Google Scholar 

  112. Baddeley AD, Hitch GJ. Working memory. Psychol Learn Motiv. 1974;8:47–89.

    Article  Google Scholar 

  113. Gathercole SE, Baddeley AD. Working memory and language. Hove: Psychology Press; 1993.

    Google Scholar 

  114. Baddeley AD. Working memory. Oxford: Oxford University Press; 1986.

    Google Scholar 

  115. De Renzi E, Nichelli P. Verbal and non-verbal short-term memory impairment following hemispheric damage. Cortex. 1975;11:341–54.

    Article  CAS  PubMed  Google Scholar 

  116. Acheson DJ, Hamidi M, Binder JR, Postle BR. A common neural substrate for language production and verbal working memory. J Cogn Neurosci. 2011;23:1358–67.

    Article  PubMed  Google Scholar 

  117. Rogalsky C, Matchin W, Hickok G. Broca’s area, sentence comprehension, and working memory: an fMRI study. Front Hum Neurosci. 2008;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Vigneau M, Beaucousin V, Herve PY, et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30:1414–32.

    Article  CAS  PubMed  Google Scholar 

  119. Paulesu E, Frith CD, Frackowiak RS. The neural correlates of the verbal component of working memory. Nature. 1993;362:342–5.

    Article  CAS  PubMed  Google Scholar 

  120. Awh E, Schumacher E, Smith E et al. Investigation of verbal working memory using PET. 1994. Cognitive Neuroscience Society Meeting (conference proceedings).

    Google Scholar 

  121. McGettigan C, Warren JE, Eisner F, et al. Neural correlates of sublexical processing in phonological working memory. J Cogn Neurosci. 2011;23:961–77.

    Article  PubMed  Google Scholar 

  122. Caplan D, Waters GS. Verbal working memory and sentence comprehension. Behav Brain Sci. 1999;22:77–94.

    Google Scholar 

  123. Miyake A, Shah P. Models of working memory: mechanisms of active maintenance and executive control. New York: Cambridge University Press; 1999.

    Book  Google Scholar 

  124. Shallice T, Butterworth B. Short-term memory impairment and spontaneous speech. Neuropsychologia. 1977;15:729–35.

    Article  CAS  PubMed  Google Scholar 

  125. Vallar G, Shallice T. Neuropsychological impairments of short-term memory. Cambridge: Cambridge University Press; 1990.

    Book  Google Scholar 

  126. Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psychol Rev. 1998;105:158–73.

    Article  CAS  PubMed  Google Scholar 

  127. Szmalec A, Brysbaert M, Duyck W. Working memory and (second) language processing. Memory, language, and bilingualism: theoretical and applied approaches; 2012. p. 74–94.

    Google Scholar 

  128. Geschwind N. Specializations of the human brain. Sci Am. 1979;241:180.

    Google Scholar 

  129. Poliakov GI. Neuron structure of the brain. Cambridge: Harvard University Press; 1972.

    Google Scholar 

  130. Blinkov SM. Structural peculiarities of the human cerebrum. Moscow: Medgiz; 1955.

    Google Scholar 

  131. Kagan A, Saling MM. An introduction to Luria’s aphasiology: theory and application. Baltimore: Paul H Brookes Publishing Company; 1988.

    Google Scholar 

  132. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  133. Berlucchi G, Buchtel HA. Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res. 2009;192:307–19.

    Article  CAS  PubMed  Google Scholar 

  134. Gage N, Hickok G. Multiregional cell assemblies, temporal binding and the representation of conceptual knowledge in cortex: a modern theory by a “classical” neurologist. Carl Wernicke Cortex. 2005;41:823–32.

    PubMed  Google Scholar 

  135. Coolen ACC, Jonker HJJ. Introduction to neural networks [Dutch]. Utrecht: University Utrecht; 1991.

    Google Scholar 

  136. Rutten GJ, Ramsey NF. Functional neuroimaging in neurosurgical practice. In: Duffau H, editor. Brain mapping: from neural basis of cognition to surgical applications. Berlin: Springer; 2011. p. 207–227.

    Google Scholar 

  137. Petrides M, Pandya DN. Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol. 2009;7:e1000170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Romanski LM, Tian B, Fritz J, et al. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci. 1999;2:1131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Romanski LM, Bates JF, Goldman-Rakic PS. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol. 1999;403:141–57.

    Article  CAS  PubMed  Google Scholar 

  140. Petrides M, Pandya DN. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci. 1999;11:1011–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rutten, GJ. (2017). Neo-connectionism, Neurodynamics and Large-Scale Networks. In: The Broca-Wernicke Doctrine. Springer, Cham. https://doi.org/10.1007/978-3-319-54633-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54633-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54632-2

  • Online ISBN: 978-3-319-54633-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics