Skip to main content

Clustering PPI Networks

  • Chapter
  • First Online:
Book cover Summarizing Biological Networks

Part of the book series: Computational Biology ((COBO,volume 24))

  • 974 Accesses

Abstract

Due to the availability of large-scale ppi networks, since the last decade significant research efforts have been invested in analyzing these networks in order to comprehend cellular organization and functioning [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cluster property of a vertex v with respect to any cluster k of density \(\sigma _k\) and size \(|V_k|\) is the ratio of the total number of edges between v and each of the vertices of k to \(\sigma _k \times |V_k|\).

  2. 2.

    A bridging node in this work refers to a node having less than 3 degree but is connected to nodes with more than 15 degree.

  3. 3.

    The structural similarity of a pair of vertices is measured by normalizing the number of common neighbors with the geometric mean of the two neighborhoods’ size.

  4. 4.

    A cluster is considered significant if its \(min(p_i) < cutoff\). Otherwise, it is an insignificant cluster.

References

  1. A. Zhang, Protein Interaction Networks: Computational Analysis (Cambridge University Press, 2009)

    Google Scholar 

  2. S.S. Bhowmick, B.-S. Seah, Clustering and Summarizing Protein-Protein Interaction Networks: A Survey. IEEE Trans. Knowl. Data Eng. 28(3), 638–658 (2016)

    Google Scholar 

  3. J. Ji, A. Zhang, et al., Functional module detection from protein-protein interaction networks, in IEEE TKDE, vol. 26, issue no. 2, 2014

    Google Scholar 

  4. F. Radicchi, C. Castellano, et al., Defining and identifying communities in networks. PNAS 101(9) (2004)

    Google Scholar 

  5. F. Luo, Y. Yang et al., Modular organization of protein interaction networks. Bioinformatics 23(2), 207–214 (2007)

    Article  Google Scholar 

  6. M.P.H. Stumpf, T. Thorne et al., Estimating the size of the human interactome. PNAS 105(19), 6959–6964 (2008)

    Article  Google Scholar 

  7. M.J. Barber, Modularity and community detection in bipartite networks. Phys. Rev. 76(6) (2007)

    Google Scholar 

  8. M.E.J. Newman, Modularity and community structure in networks. PNAS 103(23) (2006)

    Google Scholar 

  9. J. Ruan, W. Zhang, An efficient spectral algorithm for network community discovery and its applications to biological and social networks, in Proceedings of ICDM, 2007, pp. 643–648

    Google Scholar 

  10. U. Brandes, D. Delling et al., On finding graph clusterings with maximum modularity. Graph-Theoretic Concepts in Computer Science, 2007, pp. 121–132

    Google Scholar 

  11. X. Xu, N. Yuruk, Z. Feng, T.A.J. Schweiger, Scan: a structural clustering algorithm for networks, in In ACM SIGKDD, 2007

    Google Scholar 

  12. H. Sun, J. Huang, et al., gskeletonclu: Density-based network clustering via structure-connected tree division or agglomeration, in IEEE ICDM, 2010

    Google Scholar 

  13. M. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. 69(2) (2004)

    Google Scholar 

  14. J. Huang, H. Sun, et al., Shrink: a structural clustering algorithm for detecting hierarchical communities in networks, in ACM CIKM, 2010

    Google Scholar 

  15. A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in very large networks. Phys. Rev. E 70(6) (2004)

    Google Scholar 

  16. G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998). Jan

    Article  MathSciNet  MATH  Google Scholar 

  17. D.A. Spielman, S.-H. Teng, A local clustering algorithm for massive graphs and its application to nearly-linear time graph partitioning, Sept 2008

    Google Scholar 

  18. Y. Zhou, H. Cheng, J.X. Yu, Clustering large attributed graphs: an efficient incremental approach, in IEEE ICDM, 2010

    Google Scholar 

  19. T. Nepusz, H. Yu, A. Paccanaro, Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012)

    Article  Google Scholar 

  20. C.G. Rivera, R. Vakil, J.S. Bader, NeMo: network module identification in cytoscape. BMC Bioinform. 11(Suppl 1), S61 (2010). Jan

    Article  Google Scholar 

  21. S. Asur, D. Ucar, S. Parthasarathy, An ensemble framework for clustering protein-protein interaction networks. Bioinformatics (Oxford, England) 23, i29–40 (2007)

    Google Scholar 

  22. H.N. Chua, W.-K Sung, L. Wong, Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics 22(13) (2006)

    Google Scholar 

  23. S. Navlakha, J. White, N. Nagarajan, M. Pop, C. Kingsford, Finding biologically accurate clusterings in hierarchical tree decompositions using the variation of information. J. Comput. Biol. (J. Comput. Mol. Cell Biol.) 17, 503–516 (2010). Mar

    Article  Google Scholar 

  24. C. Kingsford, S. Navlakha, Exploring biological network dynamics with ensembles of graph partitions, in Pacific Symposium on Biocomputing, 2010, pp. 166–77

    Google Scholar 

  25. G.D. Bader, C.W.V. Hogue, An automated method for finding molecular complexes in large protein interaction networks. BMC Boinform. 4, 2 (2003). Jan

    Article  Google Scholar 

  26. A.C. Gavin, M. Bosche et al., Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  Google Scholar 

  27. M.C. Costanzo, M.E. Crawford, et al., YPD, PombePD and WormPD: model organism volumes of the BioKnowledge Library, an integrated resource for protein information. Nucleic Acids Res. 29(1), 75–79 (2001)

    Google Scholar 

  28. A.H. Tong, B. Drees et al., A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2001)

    Article  Google Scholar 

  29. P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, J.M. Rothberg, A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000). Feb

    Article  Google Scholar 

  30. B.L. Drees, B. Sundin, et al., A protein interaction map for cell polarity development. PNAS 154(3) (2001)

    Google Scholar 

  31. A.E. Mayes, L. Verdone, et al., Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 18(15) (1999)

    Google Scholar 

  32. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, Y. Sakaki, A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

    Article  Google Scholar 

  33. M. Altaf-Ul-Amin, Y. Shinbo, et al., Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinform. 7(1) (2006)

    Google Scholar 

  34. I. Xenarios, L. Salwinski et al., DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30(1), 303–305 (2002)

    Article  Google Scholar 

  35. M. Li, J.-E Chen, et al., Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinform. 9(1) (2008)

    Google Scholar 

  36. A.D. King, N. Przulj, I. Jurisica, Protein complex prediction via cost-based clustering. Bioinformatics (Oxford, England) 20, 3013–3020 (2004)

    Google Scholar 

  37. C. von Mering, R. Krause et al., Comparative assessment of largescale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  38. L. Giot, J.S. Bader et al., A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003)

    Article  Google Scholar 

  39. S. Li, C.M. Armstrong et al., A map of the interactome network of the metazoan C.elegans. Science 303, 540–543 (2004)

    Article  Google Scholar 

  40. P. Pei, A. Zhang, A “seed-refine” algorithm for detecting protein complexes from protein interaction data. IEEE Trans. Nanobiosci. 6(1), 43–50 (2007)

    Article  Google Scholar 

  41. A.C. Gavin, P. Aloy et al., Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 431–436 (2006)

    Article  Google Scholar 

  42. N.J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A.P. Tikuisis, T. Punna, J.M. Peregrín-Alvarez, M. Shales, X. Zhang, M. Davey, M.D. Robinson, A. Paccanaro, J.E. Bray, A. Sheung, B. Beattie, D.P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M.M. Canete, J. Vlasblom, S. Wu, C. Orsi, S.R. Collins, S. Chandran, R. Haw, J.J. Rilstone, K. Gandi, N.J. Thompson, G. Musso, P. St, Onge, S. Ghanny, M.H.Y. Lam, G. Butland, A.M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J.S. Weissman, C.J. Ingles, T.R. Hughes, J. Parkinson, M. Gerstein, S.J. Wodak, A. Emili, J.F. Greenblatt, Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006)

    Google Scholar 

  43. S.R. Collins, P. Kemmeren et al., Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell Proteomics 6(3), 439–450 (2007)

    Article  Google Scholar 

  44. P. Jiang, M. Singh, SPICi: a fast clustering algorithm for large biological networks. Bioinformatics (Oxford, England) 26, 1105–1111 (2010)

    Google Scholar 

  45. L.J. Jensen, M. Kuhn et al., STRING 8a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)

    Article  Google Scholar 

  46. C. Huttenhower, E.M. Haley, et al., Exploring the human genome with functional maps. Genome Res. 19(6) (2009)

    Google Scholar 

  47. A.J. Enright, S. Van Dongen, C.A. Ouzounis, An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002). Apr

    Article  Google Scholar 

  48. V. Satuluri, S. Parthasarathy, D. Ucar, Markov clustering of protein interaction networks with improved balance and scalability, in Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology - BCB ’10, (ACM Press, New York, New York, USA, 2010), p. 247

    Google Scholar 

  49. S. Razick, G. Magklaras, I.M. Donaldson, iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinform. 9 (2008)

    Google Scholar 

  50. Y.-K. Shih, S. Parthasarathy, Identifying functional modules in interaction networks through overlapping Markov clustering. Bioinformatics (Oxford, England) 28, i473–i479 (2012)

    Google Scholar 

  51. L. Kiemer, S. Costa et al., WI-PHI: a weighted yeast interactome enriched for direct physical interactions. Proteomics 7, 932–943 (2007)

    Article  Google Scholar 

  52. J.B. Pereira-Leal, A.J. Enright, C.A. Ouzounis, Detection of functional modules from protein interaction networks. PROTEINS: Struct. Funct. Bioinform. 54(1), 49–57 (2004)

    Article  Google Scholar 

  53. Y.-R Cho, W. Hwang, M. Ramanathan, A. Zhang, Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinform. 8(1) (2007)

    Google Scholar 

  54. Y. Cho, L. Shi, A. Zhang, Functional module detection by functional flow pattern mining in protein interaction networks. BMC Bioinform. 9 (2008)

    Google Scholar 

  55. X. Lei, X. Huang, L. Shi, A. Zhang, Clustering PPI data based on improved functional-flow model through quantum-behaved PSO. Int. J. Data Mining Bioinform. 6(1), 42–60 (2012)

    Article  Google Scholar 

  56. V. Spirin, L.A. Mirny, Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100, 12123–12128 (2003). Oct

    Article  Google Scholar 

  57. B. Adamcsek, G. Palla, et al., CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8) (2006)

    Google Scholar 

  58. S. Zhang, X. Ning, X.-S. Zhang, Identification of functional modules in a PPI network by clique percolation clustering. Comput. Biol. Chem. 30(6), 445–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. G. Cui, Y. Chen, et al., An algorithm for finding functional modules and protein complexes in protein-protein interaction networks. J. Biomed. Biotechnol. (2008)

    Google Scholar 

  60. A. Ruepp, A. Zollner et al., The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32(18), 5539–5545 (2004)

    Article  Google Scholar 

  61. G. Liu, L. Wong, H.N. Chua, Complex discovery from weighted PPI networks. Bioinformatics (Oxford, England) 25, 1891–1897 (2009)

    Google Scholar 

  62. Y. Ho, A. Gruhler et al., Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  Google Scholar 

  63. P. Aloy, B. Bottcher et al., Structure-based assembly of protein complexes in yeast. Science 303, 2026–2029 (2004)

    Article  Google Scholar 

  64. E. Georgii, S. Dietmann, T. Uno, P. Pagel, K. Tsuda, Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics (Oxford, England) 25, 933–940 (2009)

    Google Scholar 

  65. U. Guldener et al., MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res. 34, D436–D441 (2006)

    Article  Google Scholar 

  66. S. Kerrien, Y. Alam-Faruque, B. Aranda, I. Bancarz, a. Bridge, C. Derow, E. Dimmer, M. Feuermann, A. Friedrichsen, R. Huntley, C. Kohler, J. Khadake, C. Leroy, a. Liban, C. Lieftink, L. Montecchi-Palazzi, S. Orchard, J. Risse, K. Robbe, B. Roechert, D. Thorneycroft, Y. Zhang, R. Apweiler, H. Hermjakob, IntAct–open source resource for molecular interaction data. Nucleic Acids Res. 35, D561–D565 (2007)

    Google Scholar 

  67. B.J. Frey, D. Dueck, Clustering by passing messages between data points. Science (New York, NY) 315, 972–976 (2007). Feb

    Article  MathSciNet  MATH  Google Scholar 

  68. K. Macropol, T. Can, A.K. Singh, RRW: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinform. 10, 283 (2009). Jan

    Article  Google Scholar 

  69. J. Chen, B. Yuan, Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22(18) (2006)

    Google Scholar 

  70. J.M. Cherry, C. Adler, et al., SGD: Saccharomyces genome database. Nucleic Acids Res. 26(1) (1998)

    Google Scholar 

  71. D. Dotan-Cohen, A.A. Melkman, S. Kasif, Hierarchical tree snipping: clustering guided by prior knowledge. Bioinformatics (Oxford, England) 23, 3335–3342 (2007)

    Google Scholar 

  72. M. Mete, F. Tang, X. Xu, N. Yuruk, A structural approach for finding functional modules from large biological networks. BMC Bioinform. 9 (2008)

    Google Scholar 

  73. M. Jayapandian, A. Chapman et al., Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together. Nucleic Acids Res. 35, D566–D571 (2006)

    Article  Google Scholar 

  74. D. Greene, G. Cagney, N. Krogan, P. Cunningham, Ensemble non-negative matrix factorization methods for clustering protein-protein interactions. Bioinformatics 24(15), 1722–1728 (2008)

    Article  Google Scholar 

  75. E. Segal, H. Wang, D. Koller, Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19 (2003)

    Google Scholar 

  76. A.P. Gasch, P.T. Spellman et al., Genomic expression program in the response of yeast cells to environmental changes. Mol. Biol. Cell 11 (2000)

    Google Scholar 

  77. P.T. Spellman, G. Sherlock, et al., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12) (1998)

    Google Scholar 

  78. H. Lu, B. Shi et al., Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochem. Biophys. Res. Commun. 345(1), 302–309 (2006)

    Article  Google Scholar 

  79. W.K. Huh, J.V. Falvo et al., Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  Google Scholar 

  80. J.M. Stuart, E. Segal, D. Koller, S.K. Kim, A Gene-coexpression network for global discovery of conserved genetic modules. Science 302 (2003)

    Google Scholar 

  81. I.A. Maraziotis, K. Dimitrakopoulou, A. Bezerianos, Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinform. 8(1) (2007)

    Google Scholar 

  82. A. Patil, H. Nakamura, Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinform. 6(100) (2005)

    Google Scholar 

  83. H. Zheng, H. Wang, D.H. Glass, Integration of genomic data for inferring protein complexes from global protein–protein interaction networks. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(1) (2008)

    Google Scholar 

  84. L.J. Lu, Y. Xia, et al., Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 15(7) (2005)

    Google Scholar 

  85. T.R. Hughes, M.J. Marton, et al., Functional discovery via a compendium of expression profiles. Cell 102(1) (2000)

    Google Scholar 

  86. R.J. Cho, M.J. Campbell et al., A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell. 2(1), 65–73 (1998)

    Article  Google Scholar 

  87. I. Ulitsky, R. Shamir, Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9), 1158–1164 (2009)

    Article  Google Scholar 

  88. A.P. Gasch, M. Huang, et al., Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12(10) (2001)

    Google Scholar 

  89. L. Shi, X. Lei, A. Zhang, Detecting protein complexes with semi-supervised learning in protein interaction networks. Proteome Sci. 9 (2011)

    Google Scholar 

  90. H. Wang, W. Wang, J. Yang, P. Yu, Clustering by pattern similarity in large data sets, in ACM SIGMOD, 2002

    Google Scholar 

  91. J. Sun, B. Feng, W.B. Xu, Particle swarm optimization with particles having quantum behavior, in IEEE Proceedings of Congress on Evolutionary Computation, 2004

    Google Scholar 

  92. G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005). June

    Article  Google Scholar 

  93. K. Voevodski, S.-H Teng, Y. Xia, Finding local communities in protein networks. BMC Bioinform. 10(1) (2009)

    Google Scholar 

  94. J. Vlasblom, S.J. Wodak, Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinform. 10, 99 (2009). Jan

    Article  Google Scholar 

  95. M. Girvan, M.E.J. Newman, Community structure in social and biological networks. PNAS 99(12) (2002)

    Google Scholar 

  96. I. Ulitsky, R. Shamir, Identification of functional modules using network topology and high-throughput data. BMC Syst. Biol. 8(1) (2007)

    Google Scholar 

  97. S. Brohee, J. van Helden, Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinform. 7(1) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav S. Bhowmick .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bhowmick, S.S., Seah, BS. (2017). Clustering PPI Networks. In: Summarizing Biological Networks. Computational Biology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-54621-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54621-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54620-9

  • Online ISBN: 978-3-319-54621-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics