Advertisement

Unified Characterization of P-Simple Points in Triangular, Square, and Hexagonal Grids

  • Péter Kardos
  • Kálmán PalágyiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10149)

Abstract

Topology preservation is a crucial property of topological algorithms working on binary pictures. Bertrand introduced the notion of P-simple points on the orthogonal grids, which provides a sufficient condition for topology-preserving reductions. This paper presents both formal and easily visualized characterizations of P-simple points in all the three types of regular 2D grids.

Keywords

Digital topology Regular 2D grids Topology preservation P-simple points 

Notes

Acknowledgements

This work was supported by the grant OTKA K112998 of the National Scientific Research Fund.

References

  1. 1.
    Bell, S.B.M., Holroyd, F.C., Mason, D.C.: A digital geometry for hexagonal pixels. Image Vis. Comput. 7, 194–204 (1989)CrossRefGoogle Scholar
  2. 2.
    Bertrand, G.: On \(P\)-simple points. Compte Rendu de l’Académie des Sciences de Paris, Série Math. I(321), 1077–1084 (1995)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bertrand, G., Couprie, M.: Two-dimensional parallel thinning algorithms based on critical kernels. J. Math. Imaging Vis. 31, 35–56 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bertrand, G., Couprie, M.: On parallel thinning algorithms: minimal non-simple Sets, \(P\)-simple points and critical kernels. J. Math. Imaging Vis. 35, 23–35 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brimkov, V.E., Barneva, R.P.: Analytical honeycomb geometry for raster and volume graphics. Comput. J. 48, 180–199 (2005)CrossRefGoogle Scholar
  6. 6.
    Gaspar, F.J., Gracia, J.L., Lisbona, F.J., Rodrigo, C.: On geometric multigrid methods for triangular grids using three-coarsening strategy. Appl. Numer. Math. 59, 1693–1708 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier Science, Amsterdam (1996)CrossRefGoogle Scholar
  8. 8.
    Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discret. Appl. Math., in press. doi: 10.1016/j.dam.2015.10.033
  9. 9.
    Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math. Artif. Intell. 75, 53–68 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kardos, P., Palágyi, K.: On topology preservation in triangular, square, and hexagonal grids. In: Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis, ISPA 2013, pp. 782–787 (2013)Google Scholar
  11. 11.
    Kardos, P., Palágyi, K.: Topology-preserving hexagonal thinning. Int. J. Comput. Math. 90, 1607–1617 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kardos, P., Palágyi, K.: On topology preservation for triangular thinning algorithms. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 128–142. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34732-0_10 CrossRefGoogle Scholar
  13. 13.
    Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recog. Artif. Intell. 9, 813–844 (1995)CrossRefGoogle Scholar
  14. 14.
    Kong, T.Y., Gau, C.-J.: Minimal non-simple sets in 4-dimensional binary images with (8,80)-adjacency. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 318–333. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30503-3_24 CrossRefGoogle Scholar
  15. 15.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)CrossRefGoogle Scholar
  16. 16.
    Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital Image Processing - A Discrete Approach. Academic Press, Cambridge (2000)zbMATHGoogle Scholar
  17. 17.
    Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Advances Pattern Recognition. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  18. 18.
    Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recogn. Lett. 25, 1231–1242 (2004)CrossRefGoogle Scholar
  19. 19.
    Nagy, B., Mir-Mohammad-Sadeghi, H.: Digital disks by weighted distances in the triangular grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 385–397. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-32360-2_30 CrossRefGoogle Scholar
  20. 20.
    Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discret. Appl. Math. 21, 67–79 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sarkar, A., Biswas, A., Mondal, S., Dutt, M.: Finding shortest triangular path in a digital object. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 206–218. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-32360-2_16 CrossRefGoogle Scholar
  22. 22.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Cambridge (1982)zbMATHGoogle Scholar
  23. 23.
    Wuthrich, C., Stucki, P.: An algorithm comparison between square- and hexagonal-based grids. Graph. Models Image Process. 53, 324–339 (1991)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary

Personalised recommendations