Advertisement

Simple Signed-Distance Function Depth Calculation Applied to Measurement of the fMRI BOLD Hemodynamic Response Function in Human Visual Cortex

  • Jung Hwan KimEmail author
  • Amanda Taylor
  • David Ress
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10149)

Abstract

Functional magnetic resonance imaging (fMRI) often relies on a hemodynamic response function (HRF) elicited by a brief stimulus. At conventional spatial resolutions (≥3 mm), signals in a voxel include contributions from various tissue types and pia vasculature. To better understand these contributions, full characterization of the depth dependence of the HRF is required in gray matter as well as and its apposed white-matter and pial vasculature. We introduce new methods to calculate 3D depth that combines a signed-distance function with an algebraic morphing definition of distance. The new scheme is much simpler than methods that rely upon deformable surface propagation. The method is demonstrated by combining the distance map with high-resolution fMRI (0.9-mm voxels) measurements of the depth-dependent HRF. The depth dependence of the HRF is reliable throughout a broad depth range in gray matter as well as in white-matter and extra-pial compartments apposed to active gray matter. The proposed scheme with high-resolution fMRI can be useful to separate HRFs in the gray matter from undesirable and confounding signals.

Keywords

Cerebral hemodynamic response function Signed-distance function Cortical thickness Brief stimulus-evoked neural activity fMRI 

Notes

Acknowledgements

We thank Evan Luther, Andrew Floren, and Clint Greene for assistance with experiments and analysis procedures. This work was supported by NIH R21HL108143.

References

  1. 1.
    Bajaj, C.L., Xu, G.-L., Zhang, Q.: Higher-order level-set method and its application in biomolecular surfaces construction. J. Comput. Sci. Technol. 23(6), 1026–1036 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cassot, F., et al.: A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation 13(1), 1–18 (2006)CrossRefGoogle Scholar
  3. 3.
    Chapra, S., Canale, R.: Numerical Methods for Engineers, vol. 9, 6th edn. McGraw-Hill, New York (2009)Google Scholar
  4. 4.
    De Martino, F., et al.: Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE. PLoS ONE 8(3), e60514 (2013)CrossRefGoogle Scholar
  5. 5.
    Dumoulin, S.O., Wandell, B.A.: Population receptive field estimates in human visual cortex. NeuroImage 39(2), 647–660 (2008)CrossRefGoogle Scholar
  6. 6.
    Duvernoy, H.M., Delon, S., Vannson, J.: Cortical blood vessels of the human brain. Brain Res. Bull. 7(5), 519–579 (1981)CrossRefGoogle Scholar
  7. 7.
    Eberly, D.: Distance between point and triangle in 3D. Magic Software (1999). http://www.magic-software.com/Documentation/pt3tri3.pdf
  8. 8.
    Efron, B., Tibshirani, R.J.: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1(1), 54–75 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  10. 10.
    Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97(20), 11050–11055 (2000)CrossRefGoogle Scholar
  11. 11.
    Glover, G.H.: Simple analytic spiral K-space algorithm. Magn. Reson. Med. 42(2), 412–415 (1999). Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in MedicineCrossRefGoogle Scholar
  12. 12.
    Greene, C.A., et al.: Measurement of population receptive fields in human early visual cortex using back-projection tomography. J. Vis. 14(1), 17 (2014)CrossRefGoogle Scholar
  13. 13.
    Hall, D.A., et al.: A method for determining venous contribution to BOLD contrast sensory activation. Magn. Reson. Imaging 20(10), 695–706 (2002)CrossRefGoogle Scholar
  14. 14.
    Holmes, A., et al.: Statistical modelling of low-frequency confounds in fMRI. NeuroImage 5, S480 (1997)Google Scholar
  15. 15.
    Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum. Brain Mapp. 11(1), 12–32 (2000)CrossRefGoogle Scholar
  16. 16.
    Kamitani, Y., Tong, F.: Decoding the visual and subjective contents of the human brain. Nat. Neurosci. 8(5), 679–685 (2005)CrossRefGoogle Scholar
  17. 17.
    Khan, R., et al.: Surface-based analysis methods for high-resolution functional magnetic resonance imaging. Graph. Models 73(6), 313–322 (2011)CrossRefGoogle Scholar
  18. 18.
    Koopmans, P.J., Barth, M., Norris, D.G.: Layer specific BOLD activation in human V1. Hum. Brain Mapp. 31(9), 1297–1304 (2010)CrossRefGoogle Scholar
  19. 19.
    Koopmans, P.J., et al.: Multi-echo fMRI of the cortical laminae in humans at 7T. NeuroImage 56(3), 1276–1285 (2011)CrossRefGoogle Scholar
  20. 20.
    Kruger, G., Glover, G.H.: Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn. Reson. Med. 46(4), 631–637 (2001)CrossRefGoogle Scholar
  21. 21.
    Lauwers, F., et al.: Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. NeuroImage 39(3), 936–948 (2008)CrossRefGoogle Scholar
  22. 22.
    Menon, R.S., Kim, S.-G.: Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cogn. Sci. 3(6), 207–216 (1999)CrossRefGoogle Scholar
  23. 23.
    Nestares, O., Heeger, D.J.: Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. 43(5), 705–715 (2000). Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in MedicineCrossRefGoogle Scholar
  24. 24.
    Ogawa, S., et al.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 89(13), 5951–5955 (1992)CrossRefGoogle Scholar
  25. 25.
    Polimeni, J.R., et al.: Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. NeuroImage 52(4), 1334–1346 (2010)CrossRefGoogle Scholar
  26. 26.
    Ress, D., Backus, B.T., Heeger, D.J.: Activity in primary visual cortex predicts performance in a visual detection task. Nat. Neurosci. 3(9), 940–945 (2000)CrossRefGoogle Scholar
  27. 27.
    Ress, D., et al.: Laminar profiles of functional activity in the human brain. Neuroimage 34(1), 74–84 (2007)CrossRefGoogle Scholar
  28. 28.
    Seiyama, A., et al.: Circulatory basis of fMRI signals: relationship between changes in the hemodynamic parameters and BOLD signal intensity. Neuroimage 21(4), 1204–1214 (2004)CrossRefGoogle Scholar
  29. 29.
    Siero, J.C.W., et al.: Cortical depth-dependent temporal dynamics of the BOLD response in the human brain. J. Cereb. Blood Flow Metab. 31(10), 1999–2008 (2011)CrossRefGoogle Scholar
  30. 30.
    Siero, J.C.W., et al.: BOLD specificity and dynamics evaluated in humans at 7 T: comparing gradient-echo and spin-echo hemodynamic responses. PLoS ONE 8(1), e54560 (2013)CrossRefGoogle Scholar
  31. 31.
    Turner, R.: How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. NeuroImage 16(4), 1062–1067 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Waehnert, M., et al.: Anatomically motivated modeling of cortical laminae. Neuroimage 93, 210–220 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of NeuroscienceBaylor College of MedicineHoustonUSA

Personalised recommendations