Skip to main content

Direct Phasing of Crystalline Materials from X-ray Powder Diffraction

  • Conference paper
  • First Online:
Book cover Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10149))

  • 508 Accesses

Abstract

The direct-methods phasing program, Shake-and-Bake for single crystal structure determination, has been adapted and modified to solve microcrystal structures from X-ray powder diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afeworki, M., Dorset, D.L., Kennedy, G.J., Strohmaier, K.G.: Synthesis and characterization of a new microporous material. 1. Structure of aluminophosphate EMM-3. Chem. Mater. 18, 1697–1704 (2006)

    Article  Google Scholar 

  2. Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A.G.G., Rizzi, R.: The combined use of Patterson and Monte Carlo methods for the decomposition of a powder diffraction pattern. J. Appl. Crystallogr. 39, 145–150 (2006)

    Article  Google Scholar 

  3. Burla, M.C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R., Viterbo, D.: SIR88 - a direct-methods program for the automatic solution of crystal structures. J. Appl. Crystallogr. 22, 389–393 (1989)

    Article  Google Scholar 

  4. Cao, G., Afeworki, M., Kennedy, G.J., Strohmaier, K.G., Dorset, D.L.: Structure of an aluminophosphate EMM-8: a multi-technique approach. Acta Crystallogr. B 63, 56–62 (2007)

    Article  Google Scholar 

  5. Cernik, R.J., Cheetham, A.K., Prout, C.K., Watkin, D.J., Wilkinson, A.P., Willis, B.T.M.: The structure of cimetidine (\(C_{10}H_{16}N_6S\)) solved from synchrotron-radiation X-ray powder diffraction data. J. Appl. Crystallogr. 24, 222–226 (1991)

    Article  Google Scholar 

  6. Cochran, W.: Relations between the phases of structure factors. Acta Crystallogr. 8, 473–478 (1955)

    Article  Google Scholar 

  7. Dorset, D.L., Kennedy, G.J.: Crystal structure of MCM-70: a microporous material with high framework density. J. Phys. Chem. B 109, 13891–13898 (2005)

    Article  Google Scholar 

  8. Fraz\(\tilde{a}\)o, C., Sieker, L., Sheldrick, G.M., Lamzin, V., LeGall, J., Carrondo, M.A.: Ab initio structure solution of a dimeric cytochrome c3 from Desulfovibrio gigas containing disulfide bridges. J. Biol. Inorg. Chem. 4, 162–165 (1999)

    Google Scholar 

  9. Hauptman, H.A., Karle, J.: ACA Monograph 3. Solution of the Phase Problem. I. The Centrosymmetric Crystal. American Crystallographic Association, Michigan (1953)

    MATH  Google Scholar 

  10. Hendrickson, W.A.: Analysis of protein structure from diffraction measurements at multiple wavelengths. Trans. Am. Crystallogr. Assoc. 21, 11–21 (1985)

    Google Scholar 

  11. Knudsen, K.D., Pattison, P., Fitch, A.N., Cernik, R.J.: Solution of thecrystal and molecular structure of complex low-symmetry organic compounds with powder diffraction techniques: fluorescein diacetate. Angew. Chem. Int. Ed. Engl. 37, 2340–2343 (1998)

    Article  Google Scholar 

  12. Larson, A.C., Von Dreele, R.B.: General structure analysis system GSAS. Los Alamos Nation Laboratory LAUR, pp. 86–748 (2004)

    Google Scholar 

  13. Le Bail, A., Duroy, H., Fourquet, J.L.: Ab-initio structure determination of \(LiSbWO_6\) by X-ray powder diffraction. Mater. Res. Bull. 23, 447–452 (1988)

    Article  Google Scholar 

  14. Main, P.: On the application of phase relationships to complex structures. XI. A theory of magic integers. Acta Crystallogr. A 33, 750–757 (1977)

    Article  Google Scholar 

  15. Patterson, A.L.: A direct method for the determination of the components of interatomic distances in crystals. Z. Kristallogr. (A) 90, 517–542 (1935)

    MATH  Google Scholar 

  16. Pawley, G.S.: Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357–361 (1981)

    Article  Google Scholar 

  17. Perutz, M.F.: Isomorphous replacement and phase determination in noncentrosymmetric space groups. Acta Crystallogr. 9, 867–873 (1956)

    Article  Google Scholar 

  18. Rappleye, J., Innus, M., Weeks, C.M., Miller, R.: SnB version 2.2: an example of crystallographic multiprocessing. J. Appl. Crystallogr. 35, 374–376 (2002)

    Article  Google Scholar 

  19. Rossmann, M.G., Blow, D.M.: The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallogr. 15, 24–31 (1962)

    Article  Google Scholar 

  20. Sheldrick, G.M.: The SHELX-97 Homepage. http://shelx.uni-ac.gwdg.de/SHELX/

  21. von Delft, F., Blundell, T.L.: The 160 selenium atom substructure of KPHMT. Acta Crystallogr. A 58(Suppl.), C239 (2002)

    Article  Google Scholar 

  22. Weeks, C.M., DeTitta, G.T., Hauptman, H.A., Thuman, P., Miller, R.: Structure solution by minimal-function phase refinement and Fourier filtering II. Implementation and applications. Acta Crystallogr. A 50, 210–220 (1994)

    Article  Google Scholar 

  23. Weeks, C.M., Miller, R.: The design and implementation of SnB version 2.0. J. Appl. Crystallogr. 32, 120–124 (1999)

    Article  Google Scholar 

  24. Xu, H., Hauptman, H.A.: Statistical approach to the phase problem. Acta Crystallogr. A 60, 153–157 (2004)

    Article  MathSciNet  Google Scholar 

  25. Xu, H., Smith, A.B., Sahinidis, N.V., Weeks, C.M.: SnB version 2.3: triplet sieve phasing for centrosymmetric structure. J. Appl. Crystallogr. 41, 644–646 (2008)

    Article  Google Scholar 

  26. Xu, H., Weeks, C.M., Blessing, R.H.: Powder shake-and-bake method. Z. Kristallogr. Suppl. 30, 221–226 (2009)

    Article  Google Scholar 

  27. Xu, H., Weeks, C.M., Deacon, A., Miller, R., Hauptman, H.A.: Ill-conditioned Shake-and-Bake: the trap of the false minimum. Acta Crystallogr. A 56, 112–118 (2000)

    Article  Google Scholar 

  28. Yao, J.-X.: On the application of phase relationships to complex structures XVIII. RANTAN-random MULTAN. Acta Crystallogr. A 37, 642–644 (1981)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Knowledge Building Grant from ExxonMobil Research and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, H. (2017). Direct Phasing of Crystalline Materials from X-ray Powder Diffraction. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2016. Lecture Notes in Computer Science(), vol 10149. Springer, Cham. https://doi.org/10.1007/978-3-319-54609-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54609-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54608-7

  • Online ISBN: 978-3-319-54609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics