Advertisement

Two-Dimensional Input-Revolving Automata

  • S. James ImmanuelEmail author
  • D. G. Thomas
  • Henning Fernau
  • Robinson Thamburaj
  • Atulya K. Nagar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10149)

Abstract

A new type of two-dimensional automaton for accepting two-dimensional languages, called as two-dimensional input-revolving automaton is introduced in this paper. It is an extension of input-revolving automaton for string languages. We bring out all the variants of this automaton which are based on the various types of column-revolving operations considered here. We compare the families of array languages accepted by the variants of these automata along with the well known families of Siromoney matrix languages. We discuss some of the closure properties of the new families of array languages and give an application in steganography.

Keywords

Picture languages Extended finite automaton Rectangular arrays Input-revolving 

References

  1. 1.
    Bensch, S., Bordihn, H., Holzer, M., Kutrib, M.: On input-revolving deterministic and nondeterministic finite automata. Inf. Comput. 207, 1140–1155 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT 1967, 8th Annual Symposium on Switching and Automata Theory, pp. 155–160 (1967)Google Scholar
  3. 3.
    Fernau, H., Paramasivan, M., Schmid, M.L., Thomas, D.G.: Scanning pictures the boustrophedon way. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 202–216. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-26145-4sps15 CrossRefGoogle Scholar
  4. 4.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Kamala, K., Siromoney, R.: Array automata and operations on array languages. Int. J. Comput. Appl. 4(1–4), 3–30 (1974)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kipper, G.: Investigator’s Guide to Steganography. Auerbach Publications, Boca Raton (2003)CrossRefGoogle Scholar
  7. 7.
    Meduna, A.: Automata and Languages: Theory and Applications. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture grammars. Inf. Comput. 209, 1246–1267 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rosenfeld, A.: Picture Languages: Formal Models for Picture Recognition. Acadamic Press, Cambridge (1979)zbMATHGoogle Scholar
  10. 10.
    Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1(3), 229–245 (1993)Google Scholar
  11. 11.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vols. 1–3. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture languages. Comput. Graph. Image Proc. 1, 284–307 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Siromoney, R.: Advances in array languages. In: Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 549–563. Springer, Heidelberg (1987). doi: 10.1007/3-540-18771-5_75 CrossRefGoogle Scholar
  14. 14.
    Siromoney, G., Siromoney, R., Krithivasan, K.: Picture languages with array rewriting rules. Inf. Control 22, 447–470 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Siromoney, R., Subramanian, K.G., Rangarajan, K.: Parallel/sequential rectangular arrays with tables. Int. J. Comput. Math. 6A, 143–158 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, P.S.P.: Array Grammars, Patterns and Recognizers. World Scientific Series in Computer Science, vol. 18. World Scientific Publishing, Singapore (1989)CrossRefGoogle Scholar
  17. 17.
    Wang, P.S.P.: Sequential/parallel matrix array languages. J. Cybern. 5, 19–36 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • S. James Immanuel
    • 1
    Email author
  • D. G. Thomas
    • 1
  • Henning Fernau
    • 2
  • Robinson Thamburaj
    • 1
  • Atulya K. Nagar
    • 3
  1. 1.Department of MathematicsMadras Christian CollegeChennaiIndia
  2. 2.Fachbereich 4 – Abteilung InformatikUniversität TrierTrierGermany
  3. 3.Department of Mathematics and Computer ScienceLiverpool Hope UniversityLiverpoolUK

Personalised recommendations