Skip to main content

Pharmacokinetic and Pharmacodynamics Relationships

  • Chapter
  • First Online:
Book cover Imaging Infections

Abstract

PET imaging is likely to be a valuable tool for informing multi-compartment PK analysis by directly providing tissue drug concentration as a function of time, enabling a better understanding of the quantitative relationship between drug doses, time, and drug concentrations at the site of infection. Improved PK models coupled with real-time noninvasive PET imaging will support the design of drug regimens and allow the effect of drug dose on tissue drug concentrations to be directly monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rowe, P., Pharmacokinetics. 1 ed. 2012: Bookboon.

    Google Scholar 

  2. Ruiz-Garcia, A., et al., Pharmacokinetics in drug discovery. J Pharm Sci, 2008. 97(2): p. 654-90.

    Article  CAS  PubMed  Google Scholar 

  3. Kerns, E. and L. Di, Drug-like properties: concepts, structure design and methods: from ADME to toxicity optimization. 2008: Academic Press.

    Google Scholar 

  4. Reddy, M.B., et al., Physiologically Based Pharmacokinetic Modeling: A Tool for Understanding ADMET Properties and Extrapolating to Human. New Insights into Toxicity and Drug Testing. 2013.

    Google Scholar 

  5. Singh, S.S., Preclinical pharmacokinetics: an approach towards safer and efficacious drugs. Curr Drug Metab, 2006. 7(2): p. 165-82.

    Article  CAS  PubMed  Google Scholar 

  6. Marzo, A. and L.D. Bo, Tandem mass spectrometry (LC-MS-MS): a predominant role in bioassays for pharmacokinetic studies. Arzneimittelforschung, 2007. 57(2): p. 122-8.

    CAS  PubMed  Google Scholar 

  7. Craig, W.A., Choosing an antibiotic on the basis of pharmacodynamics. Ear Nose Throat J, 1998. 77(6 Suppl): p. 7-11; discussion 11-2.

    Google Scholar 

  8. Drusano, G.L., Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol, 2004. 2(4): p. 289-300.

    Article  CAS  PubMed  Google Scholar 

  9. MacVane, S.H., J.L. Kuti, and D.P. Nicolau, Prolonging beta-lactam infusion: a review of the rationale and evidence, and guidance for implementation. Int J Antimicrob Agents, 2014. 43(2): p. 105-13.

    Article  CAS  PubMed  Google Scholar 

  10. Mehrotra, R., R. De Gaudio, and M. Palazzo, Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness. Intensive Care Med, 2004. 30(12): p. 2145-56.

    Article  PubMed  Google Scholar 

  11. Vogelman, B., et al., Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis, 1988. 158(4): p. 831-47.

    Article  CAS  PubMed  Google Scholar 

  12. Craig, W.A., J. Redington, and S.C. Ebert, Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother, 1991. 27 Suppl C: p. 29-40.

    Article  CAS  PubMed  Google Scholar 

  13. Moise, P.A. and J.J. Schentag, Pharmacokinetic and pharmacodynamic modelling of antibiotic therapy. Curr Opin Infect Dis, 1998. 11(6): p. 673-80.

    Article  CAS  PubMed  Google Scholar 

  14. Jones, A.W., A. Eklund, and R. Kronstrand, Concentration-time profiles of gamma-hydroxybutyrate in blood after recreational doses are best described by zero-order rather than first-order kinetics. J Anal Toxicol, 2009. 33(6): p. 332-5.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, L., N. Li, and H. Yang, A new stochastic approach to multi-compartment pharmacokinetic models: probability of traveling route and distribution of residence time in linear and nonlinear systems. J Pharmacokinet Pharmacodyn, 2011. 38(1): p. 83-104.

    Article  PubMed  Google Scholar 

  16. Mouton, J.W., et al., Tissue concentrations: do we ever learn? J Antimicrob Chemother, 2008. 61(2): p. 235-7.

    Article  CAS  PubMed  Google Scholar 

  17. de Araujo, B.V., et al., PK-PD modeling of beta-lactam antibiotics: in vitro or in vivo models? J Antibiot (Tokyo), 2011. 64(6): p. 439-46.

    Google Scholar 

  18. Liu, L., et al., Radiosynthesis and Bioimaging of the Tuberculosis Chemotherapeutics Isoniazid, Rifampicin and Pyrazinamide in Baboons. Journal of Medicinal Chemistry, 2010. 53(7): p. 2882-2891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bauer, M., et al., A positron emission tomography microdosing study with a potential antiamyloid drug in healthy volunteers and patients with Alzheimer’s disease. Clin Pharmacol Ther, 2006. 80(3): p. 216-27.

    Article  CAS  PubMed  Google Scholar 

  20. Saleem, A., et al., Plasma pharmacokinetic evaluation of cytotoxic agents radiolabelled with positron emitting radioisotopes. Cancer Chemother Pharmacol, 2008. 61(5): p. 865-73.

    Article  CAS  PubMed  Google Scholar 

  21. Wagner, C.C., et al., A combined accelerator mass spectrometry-positron emission tomography human microdose study with 14C- and 11C-labelled verapamil. Clin Pharmacokinet, 2011. 50(2): p. 111-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wollmer, P., et al., Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron tomography. Lancet, 1982. 2(8312): p. 1361-4.

    Article  CAS  PubMed  Google Scholar 

  23. Blom, E., F. Karimi, and B. Långström, [18F]/19F exchange in fluorine containing compounds for potential use in 18F-labelling strategies. Journal of Labelled Compounds and Radiopharmaceuticals, 2009. 52(12): p. 504-511.

    Article  CAS  Google Scholar 

  24. Lee, E., et al., A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science, 2011. 334(6056): p. 639-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, E., J.M. Hooker, and T. Ritter, Nickel-mediated oxidative fluorination for PET with aqueous [18F] fluoride. J Am Chem Soc, 2012. 134(42): p. 17456-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gandhi, A., B. Moorthy, and R. Ghose, Drug disposition in pathophysiological conditions. Curr Drug Metab, 2012. 13(9): p. 1327-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aitken, A.E., T.A. Richardson, and E.T. Morgan, Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol, 2006. 46: p. 123-49.

    Article  CAS  PubMed  Google Scholar 

  28. Danhof, M., Kinetics of drug action in disease states: towards physiology-based pharmacodynamic (PBPD) models. J Pharmacokinet Pharmacodyn, 2015.

    Google Scholar 

  29. Kato, R., Drug metabolism under pathological and abnormal physiological states in animals and man. Xenobiotica, 1977. 7(1-2): p. 25-92.

    Article  CAS  PubMed  Google Scholar 

  30. Morgan, E.T., et al., Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos, 2008. 36(2): p. 205-16.

    Article  CAS  PubMed  Google Scholar 

  31. Renton, K.W., Alteration of drug biotransformation and elimination during infection and inflammation. Pharmacol Ther, 2001. 92(2-3): p. 147-63.

    Article  CAS  PubMed  Google Scholar 

  32. Renton, K.W., Cytochrome P450 regulation and drug biotransformation during inflammation and infection. Curr Drug Metab, 2004. 5(3): p. 235-43.

    Article  CAS  PubMed  Google Scholar 

  33. Prideaux, B., et al., High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem, 2011. 83(6): p. 2112-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinstein, E.A., et al., Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother, 2012. 56(12): p. 6284-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manier, M.L., et al., Reagent precoated targets for rapid in-tissue derivatization of the anti-tuberculosis drug isoniazid followed by MALDI imaging mass spectrometry. J Am Soc Mass Spectrom, 2011. 22(8): p. 1409-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kjellsson, M.C., et al., Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob Agents Chemother, 2012. 56(1): p. 446-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berkhout, J., et al., Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice. Antimicrob Agents Chemother, 2015. 59(4): p. 2299-304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He, J., et al., Pharmacokinetics and efficacy of liposomal polymyxin B in a murine pneumonia model. Int J Antimicrob Agents, 2013. 42(6): p. 559-64.

    Article  CAS  PubMed  Google Scholar 

  39. DeMarco, V.P., et al., Determination of [11C]Rifampin Pharmacokinetics within Mycobacterium tuberculosis-Infected Mice by Using Dynamic Positron Emission Tomography Bioimaging. Antimicrob Agents Chemother, 2015. 59(9): p. 5768-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buerger, C., et al., Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother, 2006. 50(7): p. 2455-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar Verma, R., et al., Partial biodistribution and pharmacokinetics of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to rhesus macaques. Mol Pharm, 2012. 9(4): p. 1011-6.

    Article  PubMed  Google Scholar 

  42. Langer, O., et al., In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur J Nucl Med Mol Imaging, 2005. 32(2): p. 143-50.

    Article  CAS  PubMed  Google Scholar 

  43. Palner, M., et al., Preclinical Kinetic Analysis of the Caspase-3/7 PET Tracer 18F-C-SNAT: Quantifying the Changes in Blood Flow and Tumor Retention After Chemotherapy. J Nucl Med, 2015. 56(9): p. 1415-21.

    Article  CAS  PubMed  Google Scholar 

  44. Liu, L., et al., Radiosynthesis and bioimaging of the tuberculosis chemotherapeutics isoniazid, rifampicin and pyrazinamide in baboons. J Med Chem, 2010. 53(7): p. 2882-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Tonge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, Z., Gogarty, K.R., Daryaee, F., Tonge, P.J. (2017). Pharmacokinetic and Pharmacodynamics Relationships. In: Jain, S. (eds) Imaging Infections . Springer, Cham. https://doi.org/10.1007/978-3-319-54592-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54592-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54590-5

  • Online ISBN: 978-3-319-54592-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics