Skip to main content

Bacterial Imaging

  • Chapter
  • First Online:
Book cover Imaging Infections

Abstract

Bacterial infections are a major threat to human health in the USA and globally. The modern patient is increasingly susceptible to severe infections due to the use of invasive implants, cancer therapies, and the rapid emergence of multidrug-resistant bacteria. Overuse and misuse of antimicrobials are costing billions of dollars to the US health system with similar patterns in other developed and developing countries. Molecular imaging is a promising tool for the early diagnosis, and targeted pharmaceutical intervention of bacterial infection, which could significantly improve patient care and reduce costs worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keen, E.F., III, et al., Changes in the incidences of multidrug-resistant and extensively drug-resistant organisms isolated in a military medical center. Infect.Control Hosp.Epidemiol., 2010. 31(7): p. 728-732.

    Article  PubMed  Google Scholar 

  2. McKenna, M., Antibiotic resistance: the last resort. Nature, 2013. 499(7459): p. 394-6.

    Article  CAS  PubMed  Google Scholar 

  3. Nordmann, P., L. Dortet, and L. Poirel, Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med, 2012. 18(5): p. 263-72.

    Article  CAS  PubMed  Google Scholar 

  4. Melzer, M. and I. Petersen, Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect, 2007. 55(3): p. 254-9.

    Article  PubMed  Google Scholar 

  5. Salazar-Austin, N., et al., Extensively drug-resistant tuberculosis in a young child after travel to India. Lancet Infect Dis, 2015. 15(12): p. 1485-91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Velayati, A.A., et al., Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest, 2009. 136(2): p. 420-5.

    Article  PubMed  Google Scholar 

  7. McCaughey, B. Unnecessary Deaths: The Human and Financial Costs of Hospital Infections. 2nd Edition November 13, 2016]; Available from: http://emerald.tufts.edu/med/apua/consumers/faqs_2_4154863510.pdf.

  8. Falagas, M.E., et al., Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother, 2014. 58(2): p. 654-63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Donnenberg, M.S., Enterobacteriaceae, in Mandell, Douglas, and Bennett’s principles and practice of infectious diseases., J.E.B. Gerald L. Mandell, and Raphael Dolin, Editor. 2010, Elsevier Inc: Philadelphia, PA. p. 2815-2833.

    Google Scholar 

  10. Zackrisson, S., S.M. van de Ven, and S.S. Gambhir, Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res, 2014. 74(4): p. 979-1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lai, P.H., et al., Pyogenic brain abscess: findings from in vivo 1.5-T and 11.7-T in vitro proton MR spectroscopy. AJNR Am J Neuroradiol, 2005. 26(2): p. 279-88.

    PubMed  Google Scholar 

  12. Liu, G., et al., Noninvasive imaging of infection after treatment with tumor-homing bacteria using Chemical Exchange Saturation Transfer (CEST) MRI. Magn Reson Med, 2013. 70(6): p. 1690-8.

    Article  CAS  PubMed  Google Scholar 

  13. Gemmel, F., N. Dumarey, and M. Welling, Future diagnostic agents. Semin Nucl Med, 2009. 39(1): p. 11-26.

    Article  PubMed  Google Scholar 

  14. van Oosten, M., et al., Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol Rev, 2015. 39(6): p. 892-916.

    Article  PubMed  Google Scholar 

  15. Vinjamuri, S., et al., Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet, 1996. 347(8996): p. 233-5.

    Article  CAS  PubMed  Google Scholar 

  16. Sarda, L., et al., Inability of 99mTc-ciprofloxacin scintigraphy to discriminate between septic and sterile osteoarticular diseases. J Nucl Med, 2003. 44(6): p. 920-6.

    PubMed  Google Scholar 

  17. Palestro, C., et al., Phase II study of 99mTc-ciprofloxacin uptake in patients with high suspicion of osteomyelitis. J Nucl Med, 2006. 47(suppl 1): p. 152P.

    Google Scholar 

  18. Ebenhan, T., et al., Preclinical evaluation of 68Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid-ubiquicidin as a radioligand for PET infection imaging. J Nucl Med, 2014. 55(2): p. 308-14.

    Article  CAS  PubMed  Google Scholar 

  19. Vilche, M., et al., 68Ga-NOTA-UBI-29-41 as a PET Tracer for Detection of Bacterial Infection. J Nucl Med, 2016. 57(4): p. 622-7.

    Article  PubMed  Google Scholar 

  20. Welling, M., et al., The many roads to infection imaging. Eur J Nucl Med Mol Imaging, 2008. 35(4): p. 848-9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wiehr, S., et al., New pathogen-specific immunoPET/MR tracer for molecular imaging of a systemic bacterial infection. Oncotarget, 2016. 7(10): p. 10990-1001.

    PubMed  PubMed Central  Google Scholar 

  22. Mac Faddin, J.F., Biochemical tests for identification of medical bacteria. 1976, Baltimore, MD: The Williams & Wilkins Company. 312.

    Google Scholar 

  23. Ordonez, A.A., et al., A Systematic Approach for Developing Bacteria-Specific Imaging Tracers. J Nucl Med, 2017. 58(1): p. 144-150.

    Article  PubMed  Google Scholar 

  24. Konig, C., H.P. Simmen, and J. Blaser, Bacterial concentrations in pus and infected peritoneal fluid--implications for bactericidal activity of antibiotics. J Antimicrob Chemother, 1998. 42(2): p. 227-32.

    Article  CAS  PubMed  Google Scholar 

  25. Jang, K., et al., Treatment of prostatic abscess: case collection and comparison of treatment methods. Korean J Urol, 2012. 53(12): p. 860-4.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yamamoto, M., et al., Treatment of bacterial brain abscess by repeated aspiration--follow up by serial computed tomography. Neurol Med Chir (Tokyo), 2000. 40(2): p. 98-104.; discussion 104-5.

    Article  CAS  Google Scholar 

  27. Vaidyanathan, S., et al., FDG PET/CT in infection and inflammation--current and emerging clinical applications. Clin Radiol, 2015. 70(7): p. 787-800.

    Article  CAS  PubMed  Google Scholar 

  28. Marjanovic, S., et al., Expression of glycolytic isoenzymes in activated human peripheral lymphocytes: cell cycle analysis using flow cytometry. Exp Cell Res, 1991. 193(2): p. 425-31.

    Article  CAS  PubMed  Google Scholar 

  29. Jamar, F., et al., EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med, 2013. 54(4): p. 647-58.

    Article  PubMed  Google Scholar 

  30. Chen, R.Y., et al., PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med, 2014. 6(265): p. 265ra166.

    Google Scholar 

  31. Love, C., S.E. Marwin, and C.J. Palestro, Nuclear medicine and the infected joint replacement. Semin Nucl Med, 2009. 39(1): p. 66-78.

    Article  PubMed  Google Scholar 

  32. Treglia, G., et al., Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a meta-analysis. The Foot, 2013. 23(4): p. 140-148.

    Article  PubMed  Google Scholar 

  33. Mills, B., et al., [(18)F]FDG-6-P as a novel in vivo tool for imaging staphylococcal infections. EJNMMI Res, 2015. 5: p. 13.

    Google Scholar 

  34. Lengeler, J., Nature and properties of hexitol transport systems in Escherichia coli. J Bacteriol, 1975. 124(1): p. 39-47.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Scott, M.E. and R.E. Viola, The use of fluoro-and deoxy-substrate analogs to examine binding specificity and catalysis in the enzymes of the sorbitol pathway. Carbohydrate research, 1998. 313(3): p. 247-253.

    Article  CAS  PubMed  Google Scholar 

  36. Li, Z.-B., et al., The Synthesis of 18F-FDS and Its Potential Application in Molecular Imaging. Molecular Imaging and Biology, 2008. 10: p. 92-98.

    Article  PubMed  Google Scholar 

  37. Weinstein, E.A., et al., Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography. Science translational medicine, 2014. 6(259): p. 259ra146-259ra146.

    Google Scholar 

  38. Zhu, W., et al., Biodistribution and Radiation Dosimetry of the Enterobacteriaceae-Specific Imaging Probe [18F]Fluorodeoxysorbitol Determined by PET/CT in Healthy Human Volunteers. Molecular Imaging and Biology, 2016. 18(5): p. 782-787.

    Article  PubMed  CAS  Google Scholar 

  39. Shuman, H.A. and N.A. Treptow, The Maltose-Maltodextrin-Transport System of Escherichia coli K-12, in The Enzymes of Biological Membranes, A. Martonosi, Editor. 2012, Springer Science & Business Media. p. 561-572.

    Google Scholar 

  40. Ning, X., et al., Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater, 2011. 10(8): p. 602-607.

    Google Scholar 

  41. Ning, X., et al., PET Imaging of Bacterial Infections with Fluorine-18-Labeled Maltohexaose. Angewandte Chemie International Edition, 2014. 53(51): p. 14096-14101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gowrishankar, G., et al., Investigation of 6-[18F]-Fluoromaltose as a Novel PET Tracer for Imaging Bacterial Infection. PLOS ONE, 2014. 9(9): p. e107951.

    Google Scholar 

  43. Tournu, H., A. Fiori, and P. Van Dijck, Relevance of Trehalose in Pathogenicity: Some General Rules, Yet Many Exceptions. PLOS Pathogens, 2013. 9(8): p. e1003447.

    Google Scholar 

  44. Backus, K.M., et al., Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat Chem Biol, 2011. 7(4): p. 228-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rundell, S.R., et al., Deoxyfluoro-d-trehalose (FDTre) analogues as potential PET probes for imaging mycobacterial infection. Org Biomol Chem, 2016. 14(36): p. 8598-609.

    Article  CAS  PubMed  Google Scholar 

  46. Bettegowda, C., et al., Imaging bacterial infections with radiolabeled 1-(2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-iodouracil. Proc Natl Acad Sci U S A, 2005. 102(4): p. 1145-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pullambhatla, M., et al., [(125)I]FIAU imaging in a preclinical model of lung infection: quantification of bacterial load. Am J Nucl Med Mol Imaging, 2012. 2(3): p. 260-70.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Diaz, L.A., Jr., et al., Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One, 2007. 2(10): p. e1007.

    Google Scholar 

  49. Zhang, X.M., et al., [124I]FIAU: Human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nuclear Medicine and Biology, 2016. 43(5): p. 273-279.

    Article  CAS  PubMed  Google Scholar 

  50. Kuru, E., et al., In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl, 2012. 51(50): p. 12519-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martínez, M.E., et al., New radiosynthesis of 2-deoxy-2-[18F]fluoroacetamido-d-glucopyranose and its evaluation as a bacterial infections imaging agent. Nuclear Medicine and Biology, 2011. 38(6): p. 807-817.

    PubMed  Google Scholar 

  52. Littenberg, R.L., et al., Gallium-67 for localization of septic lesions. Ann Intern Med, 1973. 79(3): p. 403-6.

    Article  CAS  PubMed  Google Scholar 

  53. Tzen, K.Y., et al., Role of iron-binding proteins and enhanced capillary permeability on the accumulation of gallium-67. J Nucl Med, 1980. 21(1): p. 31-5.

    CAS  PubMed  Google Scholar 

  54. Weiner, R., P.B. Hoffer, and M.L. Thakur, Lactoferrin: its role as a Ga-67-binding protein in polymorphonuclear leukocytes. J Nucl Med, 1981. 22(1): p. 32-7.

    CAS  PubMed  Google Scholar 

  55. Menon, S., H.N. Wagner, Jr., and M.F. Tsan, Studies on gallium accumulation in inflammatory lesions: II. Uptake by Staphylococcus aureus: concise communication. J Nucl Med, 1978. 19(1): p. 44-7.

    CAS  PubMed  Google Scholar 

  56. Kumar, V. and D.K. Boddeti, 68Ga-Radiopharmaceuticals for PET Imaging of Infection and Inflammation, in Theranostics, Gallium-68, and Other Radionuclides: A Pathway to Personalized Diagnosis and Treatment, R.P. Baum and F. Rösch, Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 189-219.

    Google Scholar 

  57. Tsan, M.F., Mechanism of gallium-67 accumulation in inflammatory lesions. J Nucl Med, 1985. 26(1): p. 88-92.

    CAS  PubMed  Google Scholar 

  58. Palestro, C.J., The current role of gallium imaging in infection. Semin Nucl Med, 1994. 24(2): p. 128-41.

    Article  CAS  PubMed  Google Scholar 

  59. Makinen, T.J., et al., Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging, 2005. 32(11): p. 1259-68.

    Article  PubMed  Google Scholar 

  60. Kumar, V., et al., (68)Ga-Citrate-PET for diagnostic imaging of infection in rats and for intra-abdominal infection in a patient. Curr Radiopharm, 2012. 5(1): p. 71-5.

    Article  CAS  PubMed  Google Scholar 

  61. Vorster, M., et al., 68Ga-citrate PET/CT in Tuberculosis: A pilot study. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN)[and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of 2014.

    Google Scholar 

  62. Kumar, V., et al., Potential use of 68Ga-apo-transferrin as a PET imaging agent for detecting Staphylococcus aureus infection. Nuclear Medicine and Biology, 2011. 38(3): p. 393-398.

    Article  CAS  PubMed  Google Scholar 

  63. Petrik, M., et al., 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med, 2010. 51(4): p. 639-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kong, Y., et al., Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12239-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lentz, C.S., et al., Design of Selective Substrates and Activity-Based Probes for Hydrolase Important for Pathogenesis 1 (HIP1) from Mycobacterium tuberculosis. ACS Infect Dis, 2016. 2(11): p. 807-815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsopelas, C., Radiotracers used for the scintigraphic detection of infection and inflammation. ScientificWorldJournal, 2015. 2015: p. 676719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Solanki, K., et al., Tc-99m Infecton: a new class of radiopharmaceutical for imaging infection. Journal of Nuclear Medicine, 1993. 34(5): p. P119-P119.

    Google Scholar 

  68. Britton, K.E., et al., Clinical evaluation of technetium-99m infecton for the localisation of bacterial infection. European Journal of Nuclear Medicine, 1997. 24(5): p. 553-556.

    Article  CAS  PubMed  Google Scholar 

  69. Britton, K.E., et al., Imaging bacterial infection with 99mTc-ciprofloxacin (Infecton). Journal of Clinical Pathology, 2002. 55(11): p. 817-823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sarda, L., et al., Evaluation of (99m)Tc-ciprofloxacin scintigraphy in a rabbit model of Staphylococcus aureus prosthetic joint infection. J Nucl Med, 2002. 43(2): p. 239-45.

    PubMed  Google Scholar 

  71. Dumarey, N. and A. Schoutens, Renal abscess: filling in with Tc-99m ciprofloxacin of defects seen on Tc-99m DMSA SPECT. Clin Nucl Med, 2003. 28(1): p. 68-9.

    Article  PubMed  Google Scholar 

  72. Langer, O., et al., In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur J Nucl Med Mol Imaging, 2005. 32(2): p. 143-50.

    Article  CAS  PubMed  Google Scholar 

  73. Alexander, K., et al., Binding of ciprofloxacin labelled with technetium Tc 99m versus 99mTc-pertechnetate to a live and killed equine isolate of Escherichia coil. Can J Vet Res, 2005. 69(4): p. 272-7.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Palestro, C., et al., Phase II study of 99mTc-ciprofloxacin uptake in patients with high suspicion of osteomyelitis. J NUCL MED MEETING ABSTRACTS, 2006. 47(suppl_1): p. 152P-.

    Google Scholar 

  75. Malamitsi, J., et al., The value of successive Infecton scans in assessing the presence of chronic bone and joint infection and in predicting its evolution after treatment and after a prolonged follow-up. Nucl Med Commun, 2011. 32(11): p. 1060-9.

    Article  PubMed  Google Scholar 

  76. Bhardwaj, V., et al., Evaluation of adequacy of short-course chemotherapy for extraspinal osteoarticular tuberculosis using 99mTc ciprofloxacin scan. Int Orthop, 2011. 35(12): p. 1869-74.

    Article  PubMed  Google Scholar 

  77. Mostafa, M., M. Motaleb, and T. Sakr, Labeling of ceftriaxone for infective inflammation imaging using 99m Tc eluted from 99 Mo/99m Tc generator based on zirconium molybdate. Applied Radiation and Isotopes, 2010. 68(10): p. 1959-1963.

    Article  CAS  PubMed  Google Scholar 

  78. Fazli, A., M. Salouti, and M. Mazidi, 99mTc-ceftriaxone, as a targeting radiopharmaceutical for scintigraphic imaging of infectious foci due to Staphylococcus aureus in mouse model. Journal of Radioanalytical and Nuclear Chemistry, 2013. 298(2): p. 1227-1233.

    Article  CAS  Google Scholar 

  79. Sohaib, M., Z. Khurshid, and S. Roohi, Labelling of ceftriaxone with 99mTc and its bio-evaluation as an infection imaging agent. Journal of Labelled Compounds and Radiopharmaceuticals, 2014. 57(11): p. 652-657.

    Article  CAS  PubMed  Google Scholar 

  80. Kaul, A., et al., Preliminary evaluation of technetium-99m-labeled ceftriaxone: infection imaging agent for the clinical diagnosis of orthopedic infection. International Journal of Infectious Diseases, 2013. 17(4): p. e263-e270.

    Article  CAS  PubMed  Google Scholar 

  81. van Oosten, M., et al., Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun, 2013. 4: p. 2584.

    PubMed  Google Scholar 

  82. Auletta, S., et al., Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clinical and Translational Imaging, 2016. 4(4): p. 229-252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rubin, R.H., et al., 111In-labeled nonspecific immunoglobulin scanning in the detection of focal infection. N Engl J Med, 1989. 321(14): p. 935-40.

    Article  CAS  PubMed  Google Scholar 

  84. Panizzi, P., J.R. Stone, and M. Nahrendorf, Endocarditis and molecular imaging. Journal of Nuclear Cardiology, 2014. 21(3): p. 486-495.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wong, D.W., et al., Imaging endocarditis with Tc-99m-labeled antibody--an experimental study: concise communication. J Nucl Med, 1982. 23(3): p. 229-34.

    CAS  PubMed  Google Scholar 

  86. Pinkston, K.L., et al., Targeting Pili in Enterococcal Pathogenesis. Infection and Immunity, 2014. 82(4): p. 1540-1547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rubin, R.H., et al., Specific and nonspecific imaging of localized Fisher immunotype 1 Pseudomonas aeruginosa infection with radiolabeled monoclonal antibody. J Nucl Med, 1988. 29(5): p. 651-6.

    CAS  PubMed  Google Scholar 

  88. Wiehr, S., et al., New pathogen-specific immunoPET/MR tracer for molecular imaging of a systemic bacterial infection. Oncotarget, 2016. 7(10): p. 10990-11001.

    PubMed  PubMed Central  Google Scholar 

  89. Malpani, B.L., G.V. Kadival, and A.M. Samuel, Radioimmunoscintigraphic approach for the in vivo detection of tuberculomas--a preliminary study in a rabbit model. Int J Rad Appl Instrum B, 1992. 19(1): p. 45-53.

    Article  CAS  PubMed  Google Scholar 

  90. Lee, J.D., et al., Immunoscintigraphy in the detection of tuberculosis with radiolabelled antibody fragment against Mycobacterium bovis bacillus Calmette-Guérin: a preliminary study in a rabbit model. European Journal of Nuclear Medicine and Molecular Imaging, 1992. 19(12): p. 1011-1015.

    CAS  Google Scholar 

  91. Oyen, W.J.G., et al., Specific antibody uptake in tuberculosis? European Journal of Nuclear Medicine, 1993. 20(6): p. 568-569.

    Article  CAS  PubMed  Google Scholar 

  92. Leevy, W.M., et al., Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc, 2006. 128(51): p. 16476-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leevy, W.M., et al., Noninvasive optical imaging of staphylococcus aureus bacterial infection in living mice using a Bis-dipicolylamine-Zinc(II) affinity group conjugated to a near-infrared fluorophore. Bioconjug Chem, 2008. 19(3): p. 686-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, X., et al., Radiolabeled Zn-DPA as a potential infection imaging agent. Nucl Med Biol, 2012. 39(5): p. 709-14.

    Article  CAS  PubMed  Google Scholar 

  95. Rice, D.R., et al., Evaluation of [(1)(1)(1)In]-labeled zinc-dipicolylamine tracers for SPECT imaging of bacterial infection. Mol Imaging Biol, 2015. 17(2): p. 204-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rice, D.R., K.J. Clear, and B.D. Smith, Imaging and therapeutic applications of zinc (II)-dipicolylamine molecular probes for anionic biomembranes. Chemical Communications, 2016. 52(57): p. 8787-8801.

    Article  CAS  PubMed  Google Scholar 

  97. Wyffels, L., et al., Synthesis and preliminary evaluation of radiolabeled bis(zinc(II)-dipicolylamine) coordination complexes as cell death imaging agents. Bioorg Med Chem, 2011. 19(11): p. 3425-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, H., et al., Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex. Apoptosis, 2013. 18(8): p. 1017-27.

    Article  CAS  PubMed  Google Scholar 

  99. Sun, T., et al., Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe [18F]FP-DPAZn2. Oncotarget, 2015. 6(31): p. 30579-91.

    PubMed  PubMed Central  Google Scholar 

  100. Kennedy, D.O., B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients, 2016. 8(2): p. 68.

    Google Scholar 

  101. Rusckowski, M., B. Fritz, and D.J. Hnatowich, Localization of infection using streptavidin and biotin: an alternative to nonspecific polyclonal immunoglobulin. J Nucl Med, 1992. 33(10): p. 1810-5.

    CAS  PubMed  Google Scholar 

  102. Lazzeri, E., et al., Clinical impact of SPECT/CT with In-111 biotin on the management of patients with suspected spine infection. Clin Nucl Med, 2010. 35(1): p. 12-7.

    Article  PubMed  Google Scholar 

  103. Lazzeri, E., et al., Scintigraphic imaging of vertebral osteomyelitis with 111in-biotin. Spine (Phila Pa 1976), 2008. 33(7): p. E198-204.

    Article  Google Scholar 

  104. Shoup, T.M., et al., Synthesis of fluorine-18-labeled biotin derivatives: biodistribution and infection localization. J Nucl Med, 1994. 35(10): p. 1685-90.

    CAS  PubMed  Google Scholar 

  105. Baldoni, D., et al., Evaluation of a Novel Tc-99m Labelled Vitamin B12 Derivative for Targeting Escherichia coli and Staphylococcus aureus In Vitro and in an Experimental Foreign-Body Infection Model. Molecular Imaging and Biology, 2015. 17(6): p. 829-837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shah, S.Q., M.R. Khan, and S.M. Ali, Radiosynthesis of (99m)Tc(CO)3-Clinafloxacin Dithiocarbamate and Its Biological Evaluation as a Potential Staphylococcus aureus Infection Radiotracer. Nucl Med Mol Imaging, 2011. 45(4): p. 248-54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Motaleb, M.A., Radiochemical and biological characteristics of 99mTc-difloxacin and 99mTc-pefloxacin for detecting sites of infection. Journal of Labelled Compounds and Radiopharmaceuticals, 2010. 53(3): p. 104-109.

    Article  CAS  Google Scholar 

  108. Siaens, R.H., et al., Synthesis and comparison of 99mTc-enrofloxacin and 99mTc-ciprofloxacin. Journal of Nuclear Medicine, 2004. 45(12): p. 2088-2094.

    CAS  PubMed  Google Scholar 

  109. Shahzad, S., et al., A new method for synthesis of 99m Tc-enorfloxacin: an infection imaging agent. Lat Am J Pharm, 2016. 35: p. 259-264.

    CAS  Google Scholar 

  110. Motaleb, M.A., et al., Study on the preparation and biological evaluation of 99mTc–gatifloxacin and 99mTc–cefepime complexes. Journal of Radioanalytical and Nuclear Chemistry, 2011. 289(1): p. 57-65.

    Article  CAS  Google Scholar 

  111. Shahzad, S., et al., Synthesis of 99m Tc-gemifloxacin freeze dried kits and their biodistribution in Salmonella typhi, Pseudomonas aeruginosa and Klebsiella pneumoniae. Arabian Journal of Chemistry, 2015.

    Google Scholar 

  112. Shah, S.Q. and M.R. Khan, Radiolabeling of gemifloxacin with technetium-99m and biological evaluation in artificially Streptococcus pneumoniae infected rats. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288(1): p. 307-312.

    Article  CAS  Google Scholar 

  113. Shahzad, S., et al., In vivo studies 99m Tc-levofloxacin freeze dried kits in Salmonella typhi, Pseudoman aeruginosa, and Escherichia coli. Lat Am J Pharm, 2015. 34: p. 760-765.

    CAS  Google Scholar 

  114. Motaleb, M., Preparation and biodistribution of 99mTc-lomefloxacin and 99mTc-ofloxacin complexes. Journal of Radioanalytical and Nuclear Chemistry, 2007. 272(1): p. 95-99.

    Article  CAS  Google Scholar 

  115. Chattopadhyay, S., et al., Synthesis and evaluation of 99m Tc-moxifloxacin, a potential infection specific imaging agent. Applied Radiation and Isotopes, 2010. 68(2): p. 314-316.

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, S., et al., Synthesis and biodistribution of a novel 99mTcN complex of norfloxacin dithiocarbamate as a potential agent for bacterial infection imaging. Bioconjugate chemistry, 2011. 22(3): p. 369-375.

    Article  PubMed  CAS  Google Scholar 

  117. Ibrahim, I., M. Motaleb, and K. Attalah, Synthesis and biological distribution of 99mTc–norfloxacin complex, a novel agent for detecting sites of infection. Journal of radioanalytical and nuclear chemistry, 2010. 285(3): p. 431-436.

    Article  CAS  Google Scholar 

  118. Sazonova, S.I., et al., Synthesis and experimental study of norfloxacin labeled with technecium-99m as a potential agent for infection imaging. Iranian Journal of Nuclear Medicine, 2015. 23(2): p. 73-81.

    CAS  Google Scholar 

  119. Erfani, M., et al., 99mTc-tricabonyl labeling of ofloxacin and its biological evaluation in Staphylococcus aureus as an infection imaging agent. Journal of Labelled Compounds and Radiopharmaceuticals, 2013. 56(12): p. 627-631.

    Article  CAS  PubMed  Google Scholar 

  120. El-Ghany, E., et al., Synthesis of 99mTc-pefloxacin: a new targeting agent for infectious foci. Journal of Radioanalytical and Nuclear Chemistry, 2005. 266(1): p. 131-139.

    Article  CAS  Google Scholar 

  121. Motaleb, M. and S. Ayoub, Preparation, quality control, and biodistribution of 99mTc-rufloxacin complex as a model for detecting sites of infection. Radiochemistry, 2013. 55(6): p. 610-614.

    Article  CAS  Google Scholar 

  122. Moustapha, M., et al., Synthesis and biological evaluation of technetium-sarafloxacin complex for infection imaging. Journal of Radioanalytical and Nuclear Chemistry, 2016. 307(1): p. 699-705.

    Article  CAS  Google Scholar 

  123. Qaiser, S., A. Khan, and M. Khan, Synthesis, biodistribution and evaluation of 99mTc-Sitafloxacin kit: a novel infection imaging agent. Journal of radioanalytical and nuclear chemistry, 2010. 284(1): p. 189-193.

    Article  CAS  Google Scholar 

  124. Shah, S.Q., A.U. Khan, and M.R. Khan, Radiosynthesis and biological evaluation of 99mTcN-sitafloxacin dithiocarbamate as a potential radiotracer for Staphylococcus aureus infection. Journal of Radioanalytical and Nuclear Chemistry, 2011. 287(3): p. 827-832.

    Article  CAS  Google Scholar 

  125. Motaleb, M., Preparation, quality control and stability of 99mTc-sparafloxacin complex, a novel agent for detecting sites of infection. Journal of Labelled Compounds and Radiopharmaceuticals, 2009. 52(10): p. 415-418.

    Article  CAS  Google Scholar 

  126. El-Tawoosy, M., Preparation and biological distribution of 99mTc-cefazolin complex, a novel agent for detecting sites of infection. Journal of Radioanalytical and Nuclear Chemistry, 2013. 298(2): p. 1215-1220.

    Article  CAS  Google Scholar 

  127. Motaleb, M., et al., Study on the preparation and biological evaluation of 99mTc–gatifloxacin and 99mTc–cefepime complexes. Journal of Radioanalytical and Nuclear Chemistry, 2011. 289(1): p. 57-65.

    Article  CAS  Google Scholar 

  128. Motaleb, M., Preparation of 99mTc-cefoperazone complex, a novel agent for detecting sites of infection. Journal of Radioanalytical and Nuclear Chemistry, 2007. 272(1): p. 167-171.

    Article  CAS  Google Scholar 

  129. Mirshojaei, S., et al., Radio labeling, quality control and biodistribution of 99mTc-cefotaxime as an infection imaging agent. Journal of Radioanalytical and Nuclear Chemistry, 2011. 287(1): p. 21-25.

    Article  CAS  Google Scholar 

  130. Ilem-Ozdemir, D., et al., Gamma scintigraphy and biodistribution of 99mTc-cefotaxime sodium in preclinical models of bacterial infection and sterile inflammation. Journal of Labelled Compounds and Radiopharmaceuticals, 2016. 59(3): p. 109-116.

    Article  CAS  PubMed  Google Scholar 

  131. Mirshojaei, S., M. Erfani, and M. Shafiei, Evaluation of 99mTc-ceftazidime as bacterial infection imaging agent. Journal of Radioanalytical and Nuclear Chemistry, 2013. 298(1): p. 19-24.

    Article  CAS  Google Scholar 

  132. Barreto, V.G., et al., Gammagrafía con 99mTc-ceftizoxima en ratas normales y en ratas con absceso inducido. Revista Española de Medicina Nuclear, 2005. 24(5): p. 312-318.

    Article  Google Scholar 

  133. Costa, P.H.N., et al., Scintigraphic imaging with technetium-99M-labelled ceftizoxime is a reliable technique for the diagnosis of deep sternal wound infection in rats. Acta Cirurgica Brasileira, 2015. 30(9): p. 632-638.

    Article  PubMed  Google Scholar 

  134. Teixeira, L.E.M., et al., Efficacy of 99mTc-labeled ceftizoxime in the diagnosis of subclinical infections associated with titanium implants in rats. Surgical infections, 2015. 16(3): p. 352-357.

    Article  PubMed  Google Scholar 

  135. Chattopadhyay, S., et al., Preparation and evaluation of 99m Tc-cefuroxime, a potential infection specific imaging agent: A reliable thin layer chromatographic system to delineate impurities from the 99m Tc-antibiotic. Applied Radiation and Isotopes, 2012. 70(10): p. 2384-2387.

    Article  CAS  PubMed  Google Scholar 

  136. Yurt Lambrecht, F., et al., Evaluation of 99mTc-Cefuroxime axetil for imaging of inflammation. Journal of Radioanalytical and Nuclear Chemistry, 2008. 277(2): p. 491-494.

    Article  CAS  Google Scholar 

  137. Shah, S.Q., A.U. Khan, and M.R. Khan, Radiosynthesis of 99mTc-nitrofurantoin a novel radiotracer for in vivo imaging of Escherichia coli infection. Journal of Radioanalytical and Nuclear Chemistry, 2011. 287(2): p. 417-422.

    Article  CAS  Google Scholar 

  138. Shah, S.Q., A.U. Khan, and M.R. Khan, Radiosynthesis and biodistribution of 99m Tc-rifampicin: a novel radiotracer for in-vivo infection imaging. Applied Radiation and Isotopes, 2010. 68(12): p. 2255-2260.

    Article  CAS  PubMed  Google Scholar 

  139. Essouissi, I., et al., Synthesis and evaluation of 99mTc-N-sulfanilamide ferrocene carboxamide as bacterial infections detector. Nuclear Medicine and Biology, 2010. 37(7): p. 821-829.

    Article  CAS  PubMed  Google Scholar 

  140. Tsopelas, C., et al., 99m Tc-Alafosfalin: an antibiotic peptide infection imaging agent. Nuclear medicine and biology, 2003. 30(2): p. 169-175.

    Article  CAS  PubMed  Google Scholar 

  141. Shahzadi, S.K., et al., 99mTc-amoxicillin: A novel radiopharmaceutical for infection imaging. Arabian Journal of Chemistry.

    Google Scholar 

  142. Roohi, S., A. Mushtaq, and S.A. Malik, Synthesis and biodistribution of 99mTc-vancomycin in a model of bacterial infection. Radiochimica Acta, 2005. 93(7): p. 415-418.

    Article  CAS  Google Scholar 

  143. Sanad, M., Labeling and biological evaluation of 99mTc-azithromycin for infective inflammation diagnosis. Radiochemistry, 2013. 55(5): p. 539-544.

    Article  CAS  Google Scholar 

  144. Borai, E., M. Sanad, and A. Fouzy, Optimized chromatographic separation and biological evaluation of 99m Tc-clarithromycin for infective inflammation diagnosis. Radiochemistry, 2016. 58(1): p. 84-91.

    Article  CAS  Google Scholar 

  145. Hina, S., et al., Preparation, biodistribution, and scintigraphic evaluation of 99mTc-clindamycin: an infection imaging agent. Applied biochemistry and biotechnology, 2014. 174(4): p. 1420-1433.

    Article  CAS  PubMed  Google Scholar 

  146. İlem-Özdemir, D., et al., 99mTc-Doxycycline hyclate: a new radiolabeled antibiotic for bacterial infection imaging. Journal of Labelled Compounds and Radiopharmaceuticals, 2014. 57(1): p. 36-41.

    Article  PubMed  CAS  Google Scholar 

  147. Abdel-Ghaney, I. and M. Sanad, Synthesis of 99mTc-erythromycin complex as a model for infection sites imaging. Radiochemistry, 2013. 55(4): p. 418-422.

    Article  CAS  Google Scholar 

  148. Roohi, S., et al., Synthesis, quality control and biodistribution of 99mTc-Kanamycin. Journal of radioanalytical and nuclear chemistry, 2006. 267(3): p. 561-566.

    Article  CAS  Google Scholar 

  149. Hina, S., et al., Labeling, quality control and biological evaluation of 99m Tc-vibramycin for infection sites imaging. Bulg Chem Comm, 2015. 47: p. 747-754.

    Google Scholar 

  150. Wang, X. and N. Murthy, Bacterial imaging comes of age. Sci Transl Med, 2014. 6(259): p. 259fs43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ordonez, A.A., Bambarger, L.E., Murthy, N., Wilson, D.M., Jain, S.K. (2017). Bacterial Imaging. In: Jain, S. (eds) Imaging Infections . Springer, Cham. https://doi.org/10.1007/978-3-319-54592-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54592-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54590-5

  • Online ISBN: 978-3-319-54592-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics